

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PIAUÍ PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA Coordenação do Programa de Pós-Graduação em Química

EXAME SELETIVO PARA INGRESSO NO CURSO DE DOUTORADO EM QUÍMICA – EDITAL 01/2015

INSTRUÇÕES:

- Utilizar caneta esferográfica AZUL ou PRETA.
- Utilizar somente a calculadora científica.
- PREENCHA a ficha de identificação abaixo.
- UTILIZE os espaços em branco para responder as questões.
- A identificação na folha de resposta será feita exclusivamente através do número de sua inscrição.
- QUALQUER outro tipo de identificação na folha de resposta implicara na ANULAÇÃO automática da sua questão.
- Responder cada questão em uma única folha de resposta.

Nº de Inscrição:	
Nome do candidato:	
Accimature	

	1A																	8A
1	1 H Hidrogénio	2A											ЗА	4A	5A	6A	7A	2 He Hélio
2	3 Li Litio	4 Be Berilio											5 B Boro	6 C Carbono	7 N Nitrogênio	8 O Oxigênio	9 F Flúor	10 Ne Neônio
3	11 Na Sódio	12 Mg Magnésio	3B	4B	5B	6B	7B		8B		1B	2B	13 Al Aumínio	14 Si Sisoio	15 P Fósforo	16 S Enxofre	17 CI Cloro	18 Ar Argônio
4	19 K Potássio	20 Ca cátoio	21 Sc Escândio	22 Ti Titânio	23 V Vanádio	24 Cr Crômo	25 Mn Manganês	26 Fe Ferro	27 Co Cobalto	28 Ni Niquel	29 Cu Cobre	30 Zn Zinco	31 Ga Gálio	32 Ge Germânio	33 As Arsênio	34 Se selénio	35 Br Bromo	36 Kr Cripitônio
5	37 Rb Rubidio	38 Sr Estrôncio	39 Y Itrio	40 Zr Zircônio	41 Nb Nióbio	42 Mo Molibdênio	43 Tc Teonécio	44 Ru Rutênio	45 Rh Ródio	46 Pd Paládio	47 Ag Prata	48 Cd Cádmio	49 In Indio	50 Sn Estanho	51 Sb Antimônio	52 Te Telúrio	53 odo	54 Xe Xenônio
)	55 Cs Césio	56 Ba Bário	57-71 *	72 Hf Háfnio	73 Ta Tântalo	74 W Tungstênio	75 Re Rênio	76 Os Ósmio	77 Ir Iridio	78 Pt Platina	79 Au _{Ouro}	80 Hg Mercurio	81 TI Tálio	Pb Chumbo	83 Bi Bismuto	84 Po Polônio	85 At Astato	86 Rn Radônio
7	87 Fr Frâncio	88 Ra Rádio	89-103	104 Rf Rutherfó	105 Db Dúbnio	106 Sg Seabórgio	107 Bh Bóhrio	108 Hs Hássio	109 Mt Meitnério	110 Ds Damstádio	111 Rg Roentgênio	112 Cn Copemicio	113 Uut Ununtrio	114 Uuq Ununquádio	115 Uup Ununpentio	116 Uuh Ununhéxio	117 Uus Ununséptio	118 Uuo Ununóctio
			*	57 La Lantânio	58 Ce cério	59 Pr Prassodimio	60 Nd Neodimio	61 Pm Promécio	62 Sm Samário	63 Eu Burópio	64 Gd Gadofinio	65 Tb Térbio	66 Dy Disprésie	67 Ho	68 Er	69 Tm	70 Yb Itérbio	71 Lu Lutécio
			**	89 Ac Actinio	90 Th Tório	91 Pa Protactinio	92 U Urânio	93 Np Neptúnio	94 Pu Plutônio	95 Am Americio	96 Cm	97 Bk Berquélio	98 Cf Califómio	99 Es Enstênio	100 Fm Férmio	101 Md Mendelévio	102 No Nobelio Omplet	103 Lr Laurêncio

Tabela Periódica dos Elementos

Questão 01: (1,0 ponto)

(a) Sabendo-se que a energia de ionização dos elementos cresce na Tabela Periódica de baixo para cima e da esquerda para a direita, **Figura 1**, explique porque os elementos do 6º período que seguem os lantanídeos, têm energias de ionização mais altas que os elementos diretamente acima deles, do 5º período. Exemplo, o potencial de ionização da Pt=870 kJ mol⁻¹ e Pd=805 kJmol⁻¹.

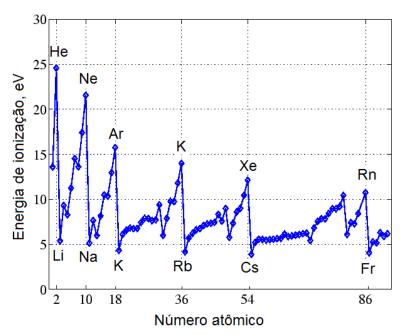


Figura 1. Variação do primeiro potencial de ionização com o número atômico.

(b) Potencial de ionização mede a resistência de um átomo em se tornar cátion, quanto maior essa resistência, mais afinidade eletrônica o átomo possui. Assim, quanto maior o potencial de ionização, maior a afinidade eletrônica. Ou seja, a afinidade eletrônica cresce também na Tabela Periódica de baixo para cima e da esquerda para a direita. Sendo assim, era de se esperar que a afinidade eletrônica do flúor fosse maior que a do cloro, no entanto, na prática percebe-se que a afinidade eletrônica do F (-328 kJmol⁻¹) é menor, em modulo, do que aquela encontrada para o CI (-348 kJmol⁻¹), qual é a explicação para essa aparente distorção?

Questão 02: (1,5 ponto)

Sabendo-se que os complexos $[Co(H_2O)_6]^{3+}$, $[Co(CN)_6]^{3-}$, $[Rh(CN)_6]^{3-}$, apresentam os seguintes desdobramentos do campo cristalino 18200, 33500, 45500 Jmol⁻¹, respectivamente, e de acordo com argumentos descritos nas teorias do campo cristalino e do orbital molecular, responda:

- (a) Por que os complexos acima, que apresentam o mesmo número de elétrons na última camada, apresentam diferentes energias para o desdobramento do campo cristalino.
- (b) Qual desses complexos pode sofrer distorção tetragonal (efeito de John Teller)? Justifique sua resposta.

(c) Já que o metal apresenta o mesmo estado de oxidação, podemos esperar que a frequência do estiramento da ligação C-N, nos complexos acima, sejam idênticas ou diferentes? Explique sua resposta.

Questão 03: (1,5 ponto)

Considerando que todas as afirmações descritas abaixo SÃO FALSAS, diga por que estão erradas.

- (a) O trabalho P-V em um processo mecanicamente reversível em um sistema fechado é sempre igual a $P\Delta V$.
- (b) O valor do trabalho, w, em um processo reversível em um sistema fechado pode ser determinado se soubermos o valor dos estados inicial e final do sistema.
- (c) Como um ciclo de Carnot é um processo cíclico, o trabalho realizado em um ciclo de Carnot é zero.
- (d) Para um processo isotérmico reversível, em um sistema fechado, ΔS tem que ser zero.
- (e) A relação $\Delta G = \Delta H T\Delta S$ é válida para todos os processos.
- (f) $C_{P,m} C_{V,m} = R$ para todos os gases.

Questão 04: (1,0 ponto)

Tendo como base os valores de velocidade inicial para a seguinte reação,

$$2 A_{(g)} + B_{2(g)} \rightarrow 2 AB_{(g)}$$

N° de análises	[A] ₀ / mol dm ⁻³	[B] ₀ / mol dm ⁻³	v ₀ / mol dm ⁻³ s ⁻¹
1	1,16	1,16	6,14 x 10 ⁻⁴
2	1,73	1,16	1,37 x 10 ⁻³
3	1,16	2,31	1,25 x 10 ⁻³

Sabendo que $[A]_0$ e $[B]_0$ são as concentrações iniciais de $A_{(g)}$ e $B_{2(g)}$, respectivamente, e que v_0 é a velocidade inicial, determine:

- (a) A lei de velocidade da reação.
- (b) A constante de velocidade.

Questão 05: (1,5 ponto)

Os medicamentos são constituídos por diversas substâncias químicas que apresentam em sua estrutura inúmeras funções orgânicas que podem ser identificadas por testes simples, a saber: teste de Bayer, teste de Jones, complexação com cloreto férrico, reação com bicarbonato de sódio, dentre outros. A codeína (codaten®), um derivado da morfina (esquema 1), o ácido ascórbico (energil C®) (esquema 2), o paracetamol (tylenol®) (esquema 3) e o ácido acetilsalicílico (aspirina®) (esquema 4) podem ter suas funções químicas identificadas pelas reações apresentadas a seguir. Apresente os produtos obtidos em cada reação e qual a função química identificada.

Esquema 1. Teste de Bayer

Esquema 2. Teste de Jones

Esquema 3. Complexação do paracetamol com o cloreto de ferro

Esquema 4- Reação da aspirina com bicarbonato de sódio

Questão 06: (1,0 ponto)

Um composto do tipo 2,2' biantraquinol, o 1,1',6,8,8'-pentahidroxi-3,3'-dimetil [2,2'-biantraceno]-9,9',10,10'-tetrona (cassiamin A, **Figura 2**), é uma biantraquinona isolada de várias espécies do gênero Senna. Os espectros de IV (**Figura 3**) e de massas (**Figura 4**) do cassiamim A são apresentados a seguir:

(a) Identifique cada estiramento mostrado no espectro vibracional da cassiamim A (Figura 3). Justifique.

Figura 2. Forma estrutural do cassiamim A.

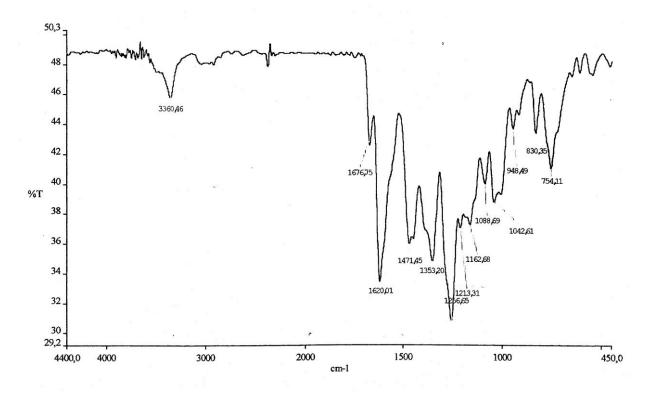


Figura 3 - Espectro vibracional, na região do IV, de cassiamim A

(b) Proponha o caminho de fragmentação do cassiamin A no espectrômetro de massas (**Figura 4**) correspondente ao pico m/z 507 (100%)

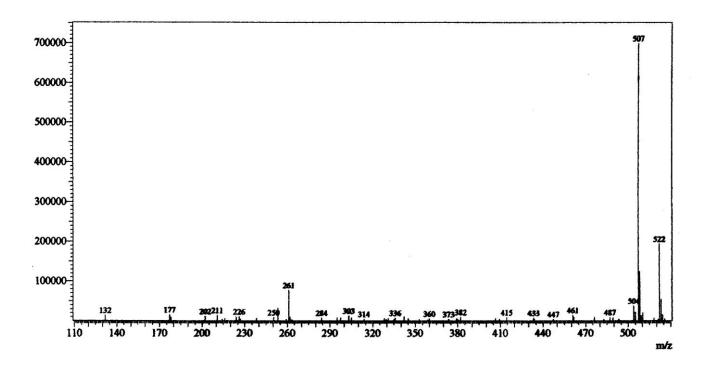


Figura 4 - Espectro de massas do cassiamin A

Questão 07: (1,5 ponto)

A determinação de cálcio em cascas de ovos é um experimento clássico, frequentemente empregado no ensino de química analítica quantitativa e de análise instrumental. Há vários experimentos simples usando o carbonato de cálcio contido nessas cascas, para demonstrar princípios de ácidos e bases, entre outros (*Quim. Nova, Vol. 32, No. 6, 1661-1666, 2009*). Um dos experimentos mais empregados envolve a precipitação do cálcio com o oxalato. Neste contexto e sem utilizar aproximações, calcule a solubilidade molar do oxalato de cálcio em uma solução que foi tamponada de forma que seu pH seja constante e igual a 4,00.

Dados:

$$[Ca^{2+}][C_2O_4^{2-}] = K_{ps} = 1.7 \times 10^{-9}$$

$$\frac{[\text{H}_3\text{O}^+][\text{HC}_2\text{O}_4^-]}{[\text{H}_2\text{C}_2\text{O}_4]} = K_1 = 5,60 \times 10^{-2}$$

$$\frac{[\text{H}_3\text{O}^+][\text{C}_2\text{O}_4^{2-}]}{[\text{HC}_2\text{O}_4^-]} = K_2 = 5,42 \times 10^{-5}$$

$$[H_3O^+][OH^-] = K_w = 1.0 \times 10^{-14}$$

Questão 08: (1,0 ponto)

Uma pilha eletroquímica foi montada com um fio de prata mergulhado numa solução de $AgNO_3$ em água e um fio de platina mergulhado em uma solução aquosa de íons Fe^{2+} e Fe^{3+} . Encontre:

- (a) Equação equilibrada que representa a reação favorável termodinamicamente que se passa na pilha nas condições padrões;
- (b) Potencial padrão da pilha (E^o_{global});
- (c) Constante de equilíbrio de oxi-redução (K_{oxi});
- (d) Potencial da pilha em duas situações, quando: i) [Fe³+] = 1,0 mol L⁻¹, [Fe²+] = 0,001 mol L⁻¹ e [Ag⁺] = 1,0 mol L⁻¹ e ii) [Fe³+] = 0,001 mol L⁻¹, [Fe²+] = 1,0 mol L⁻¹ e [Ag⁺] = 1,0 mol L⁻¹. Em qual destas condições haverá maior transferência de elétrons do Fe²+(aq) para Ag⁺(aq)? Explique.

Dados: $E^{\circ}(Fe^{3+}/Fe^{2+}) = +0.772 \text{ V e } E^{\circ}(Ag^{+}/Ag^{0}) = +0.80 \text{ V}.$