

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

EXAME SELETIVO PARA INGRESSO NO CURSO DE MESTRADO (EDITAL 01/2023) E DOUTORADO (EDITAL 02/2023) EM QUÍMICA

INSTRUÇÕES:

- Utilizar caneta esferográfica AZUL ou PRETA.
- Utilizar somente a calculadora científica.
- PREENCHA a ficha de identificação abaixo.
- UTILIZE os espaços em branco para responder as questões.
- APRESENTE todos os cálculos utilizados para alcançar os resultados. Caso a questão esteja apenas assinalada sem os cálculos, a mesma será invalidada.
- A identificação na folha de resposta será feita exclusivamente através do número de inscrição.
- QUALQUER outro tipo de identificação na folha de resposta implicará na ANULAÇÃO automática da sua questão.
- Responder cada questão em uma única folha de resposta.

Código de identificação:	
Nome do candidato:	
Assinatura:	

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

18 He hélio 4,0026	10 Ne neônio 20,180	18 Ar argônio 39,95	36 Kr criptônio 83,798(2)	Xe xenônio 131,29	86 Rn radônio	Og oganessônic	lica.orç	Lu lutécio 174,97	Lt laurêncio	ns equeactoria dna@gmail.cor
17	9 F flúor 18,998	17 C1 cloro 35,45	35 Br bromo 79,904	53 I iodo 126,90	At astato	TS tennesso	laperioc	Yb itérbio 173,05	No nobélio	e Sofnente para u pelo mail luisbru
16	8 O oxigênio 15,999	16 S enxofre 32,06	Se selênio 78,971(8)	52 Te telúrio 127,60(3)	Po polônio	116 Lv livermório	www.tabelaperiodica.org	69 Tm tillio 168,93	Md mendelévio	TTO favor avisar
15	7 N nitrogênio 14,007	15 P fósforo 30,974	AS arsênio 74,922	Sb antimônio	Bi bismuto 208,98	Mc moscóvio	W	68 Er erbio 167,26	Fm férmio	tive commons a encontre algum e
14	6 C carbono 12,011	Si Silicio 28,085	32 Ge germânio 72,630(8)	Sn estanho	Pb chumbo 207,2	FI FI fleróvio		67 Ho hôlmio 164,93	BS einstênio	Licença de uso Creative Commons by-NC-SA 4.0 - Use somente para uns educacional Caso encontre algum erro favor avisar pelo mail luisbrudna@gmail.cor
13	5 B boro 10,81	13 A1 alumínio 26,982	31 Ga gálio 69,723	49 Indio 114,82	81 T1 tálio 204,38	Nh nihônio		Dy disprósio 162,50	OC califórnio	ij
Ca		12	30 Zn zinco 65,38(2)	Cd cádmio	80 Hg mercúrio 200,59	Ch copernício		65 Tb térbio 158,93	97 Bk berquélio	
di		Π	29 Cu cobre 63,546(3)	Ag prata 107,87	79 Au owo 196,97	Rg roentgênio		64 Gd gadolinio 157,25(3)	Cm cúrio	
ý		elativa)	28 Ni niquel 58,693	46 Pd paládio 106,42	78 Pt platina 195,08	DS darmstádtio		63 Eu európio 151,96	95 Am amerício	
erió		massa atômica re	27 Co cobalto 58,933	45 Rh ródio 102,91	77 Ir iridio 192,22	109 Mt meitnério		62 Sm samário 150,36(2)	94 Pu plutônio	
be	número atômico - símbolo guímico - nome	8 8	26 Fe ferro 55,845(2)	44 Ru rutênio 101,07(2)	76 OS ósmio 190,23(3)	108 HS hássio		Pm promécio	Np neptúmio	
[a]	númerc símbol nome	peso	Mn manganês 54,938	Tc tecnécio	75 Re rênio 186,21	107 Bh bóhrio		Nd neodimio 144,24	92 U urânio 238,03	
ela	# !!	9	24 Crômio 51,996	Mo molibdênio 95,95	74 W tungstênio 183,84	Sg seabórgio		Pr praseodímio 140,91	Pa protactínio 231,04	
abe		വ	23 V vanádio 50,942	41 Nb miobio 92,906	T3 Ta tântalo 180,95	Db dùbnio		58 Cério 140,12	90 Th tório 232,04	
تم		4	22 Ti titânio 47,867	40 Zr zircônio 91,224(2)	72 Hf háfnio 178,486(6)	104 Rf rutherfórdio		La lantânio 138,91	Ac actímio	
		ю	Sc escândio 44,956	39 itrio 88,906	57 a 71	89 a 103	, _			
2	Be berilio 9,0122	Mg magnésio 24,305	20 Ca cálcio 40,078(4)	St estrôncio 87,62	56 Ba bário 137,33	Ra rádio			Este OR Code da acesso gratuito a centenas de videos e imagens sobre os elementos químicos.	
1 1 H hidrogênio 1,008	3 Litio 6,94	11 Na sódio 22,990	19 K potássio 39,098	Rb rubidio 85,468	55 Cs césio 132,91	87 Fr frâncio		譝	Este QR Code di a centenas de v sobre os elem	

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO

CENTRO DE CIÊNCIAS DA NATUREZA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

Q01- Assinale a alternativa que corresponde ao pH de uma solução de 1,0 x 10^{-3} mol L⁻¹ de NaOH; 1,0 x 10^{-8} mol L⁻¹ de HNO₃; 1,0x 10^{-2} mol L⁻¹ de H₃CCOOH e NaOCl 0,01 mol L⁻¹ respectivamente. Dados (Kw = 1,0 x 10^{-14} ; Ka(H₃CCOOH) = 1,8 x 10^{-5} ; Ka(HOCl) = 3,0 x 10^{-8})

- a) 11,0; 6,9; 3,4; 9,8
- b) 3,0; 8,0; 3,4; 7,5
- c) 11,0;8,0; 3,4; 9,8
- d) 3,0; 6,9; 3,4; 7,5
- e) 11,0; 6,9; 2,0; 9,8

```
NaOH
                             Na++OH^{-}
                                         1.0 \times 10^{-3} \text{ mol/L} \rightarrow \text{pOH} = -\log (1.0 \times 10^{-3}) = 3 \text{ e, portanto, } \mathbf{pH} = 11
1.0 \times 10^{-3} \text{ mol/L}
                                  H^+ + NO_3
                                                                                               H_2O
1.0 \times 10^{-8} \text{ mol L}^{-1} 1.0 \times 10^{-8} \text{ mol L}^{-1}
                                                                                                               1.0 \times 10^{-7} \text{ mol/L}
[H^+] = [H^+]_{HNO3} + [H^+]_{H2O} \rightarrow [H^+] = (1.0 \times 10^{-8} \text{ mol } L^{-1}) + (1.0 \times 10^{-7} \text{ mol/L})
[H+] = 1.1 \times 10^{-7} \text{ mol/L e, portanto, pH} = -\log (1.1 \times 10^{-7}) \rightarrow \text{pH} = 6.9
                                                           H<sub>3</sub>CCOO<sup>-</sup>
H<sub>3</sub>CCOOH
                                             H^+ +
1.0 \times 10^{-2} \text{ mol L}^{-1} 1.0 \times 10^{-2} \text{ mol L}^{-1}
Ka = \frac{[H+][H3CCOO-]}{[H3CCOOH]}, sendo [H+] = [H_3CCOO^-] e [H_3CCOOH] \sim 1,0 \times 10^{-2} mol/L.
[H+] = 4,243 \times 10^{-4} \text{ mol/L e portanto, } \mathbf{pH} = 3,4
```

$$\begin{split} \text{NaOCl} &\;\; \leftrightharpoons \;\; \text{Na + OCl} \;\; - \quad \text{e} \quad \quad \text{OCl-} + \text{H}_2\text{O} \leftrightarrows \text{HOCl} + \text{OH}^- \\ 0,01 \;\; \text{mol} \;\; \text{L}^{-1} &\;\; 0,01 \;\; \text{mol} \;\; \text{L}^{-1} &\;\; \text{K}_b = \frac{[\text{HoCl}][\text{OH}^-]}{[\text{OCl-}]} = \frac{kw}{ka}, \; \text{sendo} \; [\text{HOCl}] = [\text{OH}^-] \; \text{e} \\ [\text{OCl-}] \sim 0,01 \;\; \text{mol} \;\; \text{L}^{-1} \;\; , \; \text{assim}, \; [\text{OH}^-] = 5,77 \;\; \text{x} 10^{-5} \;\; \text{mol/L} \rightarrow \text{pHO} = 4,2 \; \text{e} \;\; \textbf{pH} = \textbf{9,8} \end{split}$$

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

&	all all
*	
	JEP!
The Property of	1971

Código de Identificação:

- Q02 Analise as afirmativas abaixo e julgue como verdadeira (V) ou falsa (F):
- (V) O pH no ponto de equivalência de uma titulação entre um ácido forte e uma base fraca é ácida.
- (V) O pH no ponto de equivalência entre um ácido forte e uma base forte é neutro.
- (**F**) O pH utilizado pelo método de Mohr deve ser ácido e pelo método de Volhard deve ser básico em volumetria de precipitação.
- (V) Agentes complexantes auxiliares evitam que o íon metálico (analito) precipite em pH alcalino e eliminam interferências.
- (F) O amido é utilizado como indicador em volumetria de óxido-redução sendo classificado como autoindicador.

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

1971	

Código de Identificação:

Q03 – Uma amostra de vinagre deve ser analisada quanto ao teor de ácido acético por volumetria de neutralização. Para tanto o analista pipeta 25,00 mL da amostra para um erlenmeyer e adiciona algumas gotas do indicador e titula a solução com NaOH 0,50 mol/L. O ponto final da titulação foi alcançado após adição de 35,80 mL da base. (Ka (H₃CCOOH) = 1,8 x 10⁻⁵, Massa molecular do ácido acético: 60,0 g mol⁻¹). Calcule a concentração de ácido acético na amostra em mol/L e percentagem m/v;

 $NaOH \Rightarrow Na++OH-$

Em mol L⁻¹:

 $n_{base} = n_{acido}$

 $C_{base} \times V_{base} = C_{\acute{a}cido} \times V_{\acute{a}cido}$

 $0.50 \times 35.80 = C_{\text{ácido}} \times 25.00$

 $C_{\text{ácido}} = 0.72 \text{ mol } L^{-1}$

Em % (m/v):

 $n_{base} = n_{\acute{a}cido}$

 $C_{base} \times V_{base} = \frac{m\'{a}cido}{MM\'{a}cido}$

0,50 mol L⁻¹ x 35,80x10⁻³ L= $\frac{m\acute{a}cido}{60,0 \ g/mol}$

 $m_{\text{ácido}} = 1,07 \text{ g}$

portanto,

1,07 g _____ 25,00 mL

X _____100 mL

X = 4,30% (m/v)

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

Código de Identificação:

Q04 – A síntese da amônia na indústria é descrita pela equação química:

$$N_{2(g)} + 3 H_{2(g)} \rightleftharpoons 2 NH_{3(g)}, \Delta H = -46 \text{ KJ mol}^{-1}$$

A tabela abaixo reporta a variação do valor de K_c com incremento da temperatura:

Temperatura (° C)	$K_{\rm c} ({\rm L/mol})^2$
25	5.0×10^8
500	6,0 x 10 ⁻²
1000	2,4 x 10 ⁻³

Analisando os dados acima, julgue os itens a seguir, colocando V para VERDADEIRO e F para FALSO.

- (**V**) Diminuindo a quantidade de NH_{3(g)}, o equilíbrio se desloca para a direita;
- (\mathbf{V}) Diminuindo a quantidade de $N_{2(g)}$, o equilíbrio se desloca para a esquerda;
- (**F**) Diminuindo o volume do sistema, o equilíbrio se desloca para a esquerda;
- (V) Aumentando a pressão do sistema, o equilíbrio se desloca para a direita;
- (**F**) Adicionando um poderoso catalisador inorgânico (ex. magnetita, Fe₃O₄), o equilíbrio se desloca para direita;
- (V) Na reação em questão, os reagentes não são totalmente transformados em amônia;
- (**F**) No estado de equilíbrio, em um sistema fechado, estão presentes a amônia (NH₃) ou os gases hidrogênio (H₂) e nitrogênio (N₂);
- (V) Analisando os valores de K_c da tabela, conclui-se que o rendimento da reação na indústria será maior na temperatura de 25°C do que na temperatura de 1.000°C;
- (V) A uma mesma temperatura, o aumento na concentração dos gases hidrogênio (H_2) e nitrogênio (N_2) alterará a concentração da amônia (NH_3) no novo estado de equilíbrio sem alterar o valor de K_c ;
- (\mathbf{V}) Se a equação acima for multiplicada por 2, a nova constante de equilíbrio será $K_{c(nova)}$

 $=K_{c(antiga)}^2$

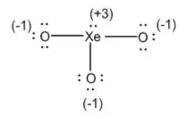
MINISTÉRIO DA EDUCAÇÃO

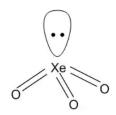
UNIVERSIDADE FEDERAL DO PIAUÍ

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

Código de Identificação:


Q05 - Desenhe as estruturas de Lewis, encontre as cargas formais e o número de coordenação total (NCT) para as seguintes espécies:

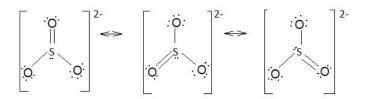

- a) SCN-
- b) XeO₃
- c) BF₄
- d) SO₃²⁻

$$\begin{bmatrix} : S = C = N : \end{bmatrix} \longleftrightarrow \begin{bmatrix} : S = C - N : \end{bmatrix} \qquad \begin{bmatrix} : S - C = N \end{bmatrix}$$
A
B
C

- (0) (0) (-1)
- (+1) (0) (-2)
- (-1) (0) (0)

Estrutura A é a mais estável com NCT = 2 + 0 = 2

Estrutura primitiva


Estrutura com expansão do octeto (CFs; Xe

= 0 e O = 0, seguindo o princípio da eletroneutralidade / NCT = 3 + 1 = 4

CFs; B = -1 e F = 0 / Usar o principio da eletroneutralidade para

justificar, NCT = 4 + 0 = 4

CFs /; S = 0, O_{simp} = -1 e $O_{dup} = 0$ com NCT = 3 + 1 = 4

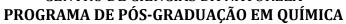
PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

863	ille (B	
		2	
	MIZ		
<u></u>	FPI_		
(ANY PERSONS	971	PULL	

Q06. As propriedades gerais dos elementos, estrutura molecular e cargas formais desempenham um papel fundamental na compreensão e predição do comportamento químico das substâncias. Esses conceitos são essenciais para os químicos entenderem como os átomos interagem e se combinam para formar moléculas. Com base nestes conceitos, analise as afirmativas abaixo.

- I) O carbono possui afinidade ao elétron mais negativa do que nitrogênio. Ou seja, o nitrogênio terá menor tendência em receber o elétron.
- II) O berílio apresenta maior energia de ionização do que lítio, devido ao aumento da carga nuclear. (**FALSO** O elétron adicional entra no orbital 2s do lítio, mas deve entrar no orbital $2p_x$ do berílio, que está muito menos ligado ao núcleo (carga nuclear está bem blindada no Be)
- III) O íon tiocianato (SCN⁻) apresenta um híbrido de ressonância com três estruturas mais importantes, sendo que a estrutura com carga formal -1 para nitrogênio é a mais importante.
- IV) A espécie IO₅ possui arranjo e estrutura octaédrica, com uma única estrutura que apresenta expansão do octeto no átomo central iodo. (**FALSO** IO₅ possui duas estruturas com expansão do octeto (com 12 e 14 elétrons), sendo que uma estrutura forma uma ligação dupla no oxigênio)
- V) BrF₅ apresenta arranjo piramidal de base quadrada ao redor do átomo central e estrutura molecular octaédrica. (FALSO é o contrário!)


Assinale a alternativa **CORRETA**:

- a) Se todas as afirmativas estão corretas
- b) Se as afirmativas I, II, III e IV estão corretas
- c) Se as afirmativas II, IV e V estão corretas
- d) Se as afirmativas I e IV estão corretas
- e) Se apenas as afirmativas I e III estão corretas

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

	464
	<u></u> ■UFPI
1	AND DESCRIPTION OF PARTY AND PARTY.

entificação:
entificação:

Q07 – Associe a primeira coluna (estrutura do composto) com a segunda coluna (nome do composto). Observe que a segunda coluna tem três itens a mais, portanto devem ficar três itens sem marcar:

ons sem marcar.				
(A)	(CH ₃) ₂ (CH ₃ CH ₂)CCH ₂ CH ₂ CH ₂ CHO	() 5-etil-5-metil-hexanal		
(B)		(E) Cloreto de pentanoíla		
(C)	ОН	(D) Anidrido etanoico propanoico		
(D)		(C) Ácido benzóico		
(E)	OCI	(A) 5,5-dimetil-heptanal		
(F)	NHCH ₃	(I) Ácido 5-etil-heptanoico		
(G)	OCH ₃ CH ₃	(J) Acetato de potássio		
(H)	$CH_3CH_2CH_2CH_2CEN$	(B) 5-Metil-hex-3-en-2-ona		
(I)	ОН	(G) Propanoato de etila		
(J)	O-K+	(F) <i>N</i> -Metil-etanoamida		
		(H) Hexanonitrila		
		() Cloreto de pentila		
		() Anidrido propanoico etanoico		

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

Código de Identificação:

- Q08 Coloque F (Falsa) ou V (Verdadeira) para as seguintes sentenças:
- (V) O álcool butílico e éter etílico têm igual solubilidade em água
- (F) O fenol é um ácido mais forte do que o p-nitrofenol
- (V) O m-aminofenol é um ácido mais fraco do que o fenol
- (F) O álcool butílico tem ponto de ebulição menor do que o éter etílico
- (F) O metanol não forma ligação de hidrogênio com a acetona e nem com o éter etílico
- (F) Mistura racêmica tem atividade óptica
- (**F**) Enantiômeros são estereoisômeros que são imagens um do outro no espelho e são sobreponíveis
- (\mathbf{V}) Os isômeros Z e E são diastereoisômeros
- (F) O fenol é menos reativo do que o benzeno frente a reagentes eletrofílicos
- (**V**) A reação do Br₂/FeBr₃ com o tolueno conduz a formação de dois produtos principais, *o* e *p*-bromototueno

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

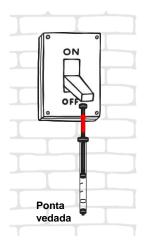
Q09 – Responda as questões que seguem:

I) (a) Esquematize a equação da reação da cicloexanona com o etilenoglicol em meio
 ácido. (b) A qual classe de compostos orgânicos pertence o produto formado?

I (a)

I(b) - O produto formado pertence a classe dos cetais

II) Dê o produto das seguintes reações:



PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

Q10 - Com a enorme onda de calor que assola o mundo devido ao aquecimento global, várias produções de grãos têm sofrido com superaquecimento de seus estoques durante a etapa de secagem, especialmente as de produtores com menos recursos. No Piauí, em pleno BRO-Bró (sigla referente aos meses mais quentes do ano na cidade, que terminam com "bro", a saber: setembro, outubro, novembro e dezembro), um estudante de química estagiando em uma dessas produções resolveu criar um acionador automático de um climatizador instalado na sala de secagem, de modo a evitar esse superaquecimento e ganhar tempo para outras atividades no campo. O sistema é baseado na expansão do ar em uma seringa vedada na ponta e fixada próximo a um interruptor que liga o sistema de resfriamento, conforme mostra a Figura a seguir:

Antes de vedar a seringa, foi puxado parte do êmbolo para o ar entrar até um volume inicial de 0,041 cm³.

- Temperatura inicial do ambiente = 17 °C
- ✓ Pressão da sala de secagem = 1 atm
- ✓ Diâmetro interno da seringa = 2 mm

Qual seria a temperatura mínima de acionamento do interruptor pela seringa, considerando que o êmbolo da seringa deve deslocar no mínimo 0,5 cm para cima? (desconsidere qualquer atrito ou força que o êmbolo possa exercer internamente

na seringa ou no interruptor)

(DADOS:
$$PV = nRT$$
; $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$; $V_{cilindro} = \pi \cdot r^2 \cdot h$; $T_K = T_{\circ C} + 273$)

(a)
$$-162$$
 °C

(b) 111 °C

(c) 128 °C

(d) 162 °C

(e) 401 °C

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$I_1$$
 I_2 $a P = constante$

$$\frac{V_1}{V_2} = \frac{V_2}{V_2}$$

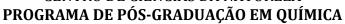
$$T_1 = 17 \,^{\circ}C = 290 \, K$$

$$V_1 = 0,041 \ cm^3 = 41 \ mm^3$$

V₁ = 0,041 cm = 41 mm

 $V_2 = V_1 + V_{deslocado}$

 $V_2 = V_1 + \pi r^2 h$


 $V_2 = 0.0567 \ cm^3 = 56.7 \ mm^3$

$$T_2 = 401 \, K = 128 \, ^{\circ}C$$

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

a P = constante

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$T_2 = \frac{V_2}{V_1} \cdot T_1$$

$$T_1 = 17 \,{}^{\circ}C = 290 \, K$$

$$V_1 = 0,041 \, cm^3 = 41 \, mm^3$$

$$V_2 = V_1 + V_{deslocado}$$

$$V_2 = V_1 + \pi r^2 h$$

$$V_2 = 0,0567 \ cm^3 = 56,7 \ mm^3$$

 $T_2 = 401 \, K = 128 \, {}^{\circ}C$

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

	*
	UFPI
7	1971

_

Q11 - Uma das principais questões em relação ao uso do gás hidrogênio (H2) como combustível é o armazenamento e transporte desse gás. Atualmente, muitas empresas têm apostado no armazenamento químico de H2(g) na forma de amônia (NH3), por ser de mais fácil transporte em fase líquida e já ter uma logística nacional resolvida de fabricação e transporte. Um funcionário de uma dessas empresas, que acabara de chegar, precisava descobrir qual combustível geraria mais calor na combustão por litro, H2 ou NH3 para ser contratado em definitivo? Por sorte, na sala de estoque de combustível da empresa, havia algumas anotações do antigo funcionário, incluindo uma anotação importante que encontrou na lixeira da sala:

$$4 \, NH_{3(g)} + 7 \, O_{2(g)} \rightarrow 4 \, NO_{2(g)} + 6 \, H_2O_{(g)} \qquad \Delta H^\circ = -1132 \, kj$$

$$6 \, NO_{2(g)} + 8 \, NH_{3(g)} \rightarrow 7 \, N_{2(g)} + 12 \, H_2O_{(g)} \qquad \Delta H^\circ = -2740 \, kj$$

$$2 \, NH_{3(g)} \rightarrow N_{2(g)} + 3 \, H_{2(g)} \qquad \Delta H^\circ = +92 \, kj$$

$$M_{\text{H}} = 1 \, g/\text{mol} \qquad \rho_{\text{NH}3} = 0.73 \, \text{kg/m}^3$$

$$M_{\text{N}} = 14.01 \, g/\text{mol} \qquad \rho_{\text{H2}} = 0.09 \, g/\text{L}$$

Com base nessas anotações, **qual seria a relação entre a entalpia de combustão <u>por</u> <u>mol</u> de NH₃ (gerando N₂ e H₂O) e de H₂ (gerando H₂O)? Qual seria o combustível mais bem indicado para o futuro do ponto de vista energético?**

(R: $\Delta H^{\circ}_{NH_3} = -317 \ kj/mol$; $\Delta H^{\circ}_{H_2} = -242 \ kj/mol$); ~1,3 vezes mais energia liberada pela amônia na combustão por mol de molécula)

MINISTÉRIO DA EDUCAÇÃO

UNIVERSIDADE FEDERAL DO PIAUÍ

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

PARA A COMBUSTÃO DA AMÔNIA

PARA A COMBUSTÃO DO GÁS HIDROGÊNIO

Reação de combustão da amônia (resultado da primeira parte)

$$4 NH_{3(g)} + 3 O_{2(g)} \rightarrow 2 N_{2(g)} + 6 H_{2}O_{(g)} \qquad \Delta H^{\circ} = -1268 \ kj$$

$$2 NH_{3(g)} \rightarrow N_{2(g)} + 3 H_{2(g)} \qquad \Delta H^{\circ} = +92 \ kj \quad \text{Inverte} + (X2)$$

$$4 MH_{3(g)} + 3 O_{2(g)} \rightarrow 2 M_{2(g)} + 6 H_{2}O_{(g)} \qquad \Delta H^{\circ} = -1268 \ kj$$

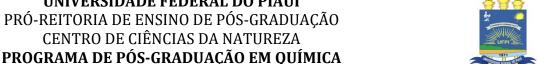
$$2 M_{2(g)} + 6 H_{2(g)} \rightarrow 4 M_{3(g)} \qquad \Delta H^{\circ} = -184 \ kj$$

$$6 H_{2(g)} + 3 O_{2(g)} \rightarrow 6 H_{2}O_{(g)} \qquad \Delta H^{\circ} = -1452 \ kj \qquad (\div 3)$$

$$2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_{2}O_{(g)} \qquad \Delta H^{\circ} = -484 \ kj$$

$$Para 2 mol de H_{2}$$

$$4 MH^{\circ}(H_{2}) = -242 \ kj/mol$$


RELAÇÃO

$$\frac{\Delta H^{\circ}(NH_3) = -317 \ kj/mol}{\Delta H^{\circ}(H_2) = -242 \ kj/mol} \longrightarrow \boxed{\sim 1, 3}$$

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

Código de Identificação: _	

Q12 - A amônia como meio de transportar H₂ verde (combustível do futuro) já vem sendo explorada há alguns anos. Nesse caso, o gás hidrogênio formado via eletrólise da água empregando células fotovoltaicas é canalizado para um reator, onde reage com o gás N₂ para gerar NH₃ via processo de Haber-Bosch, amplamente empregado na indústria. Como a obtenção da amônia por esse processo é lenta, algumas estratégias são adotadas para acelerar a reação, como o uso de catalisadores (substâncias capazes de alterar o mecanismo reacional para um menor consumo energético, acelerando a reação sem mudar os produtos formados), e/ou mudança da temperatura e concentração das espécies. Admitindo-se que a lei da velocidade e a ordem das reações em relação aos reagentes H2 e N2 coincidem com seus coeficientes estequiométricos na reação balanceada, se duplicarmos a concentração do gás hidrogênio, triplicarmos a concentração do gás nitrogênio e aumentarmos a temperatura de 25 °C para 35°C, é correto afirmar que:

- (a) A velocidade final é 2 vezes a velocidade inicial.
- (b) A velocidade final é 6 vezes a velocidade inicial.
- (c) A velocidade final é 16 vezes a velocidade inicial.
- (d) A velocidade final é 24 vezes a velocidade inicial.
- (e) A velocidade final é 48 vezes a velocidade inicial.

PRÓ-REITORIA DE ENSINO DE PÓS-GRADUAÇÃO CENTRO DE CIÊNCIAS DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

Reação balanceada

$$3 H_2 + N_2 \rightarrow 2 NH_3$$

Lei da velocidade (no início)

$$v_0 = k \cdot [H_2]_0^3 [N_2]_0$$

Duplicar a $[H_2]$ e triplicar $[N_2]$

$$v = k \cdot (2[H_2]_0)^3 (3[N_2]_0)$$

$$v = k \cdot 8[H_2]_0^3 \cdot 3[N_2]_0$$

$$v = 24 \cdot \underbrace{k \cdot [H_2]_0^3 [N_2]_0}_{v_0}$$

$$v = 24 \cdot v_0$$
 -

→ Lei de Van't Hoff

A cada aumento de 10 °C, a velocidade dobra.

$$\boldsymbol{v}' = 2\boldsymbol{v} = \mathbf{48} \cdot \boldsymbol{v_0}$$

Ps.: é importante perceber que essa regra só funciona para algumas reações, dependendo do valor de sua E_a . Se a energia de ativação for mais elevada, o aumento de 10 °C pode até triplicar a velocidade. Porém, na questão, não há outras alterativas superiores a 24 vezes, o que torna a **letra (e)** da questão, a única alternativa possível

