Bibliografia:
| 1. Alexander R. Optimization and gaits in the locomotion of vertebrates. Physiological Reviews. 1989;69(4):1199-227. 2. Ardigò L, Saibene F, Minetti AE. The optimal locomotion on gradients: walking, running or cycling? European Journal of Applied Physiology. 2003;90(3-4):365-71. 3. Asmussen E, Bonde‐Petersen F. Apparent efficiency and storage of elastic energy in human muscles during exercise. Acta Physiologica. 1974;92(4):537-45. 4. Cavagna GA, Kaneko M. Mechanical work and efficiency in level walking and running. The Journal of Physiology. 1977;268(2):467-81. 5. Cavanagh PR, Kram R. Mechanical and muscular factors affecting the efficiency of human movement. Medicine and Science in Sports and Exercise. 1985a;17(3):326-31. 6. Cavanagh PR, Kram R. The efficiency of human movement-a statement of the problem. Medicine and Science in Sports and Exercise. 1985b;17(3):304-8. 7. Di Prampero PE. The energy cost of human locomotion on land and in water. International Journal of Sports Medicine. 1986;7(02):55-72. 8. Donovan CM, Brooks GA. Muscular efficiency during steady-rate exercise. II. Effects of walking speed and work rate. Journal of Applied Physiology. 1977;43(3):431-9. 9. Fagundes AO, Monteiro EP, Franzoni LT, Fraga BS, Pantoja PD, Fischer G, Peyré-Tartaruga LA. Effects of load carriage on physiological determinants in adventure racers. PloS one. 2017;12(12):e0189516. 10. Figueiredo P, Ribeiro PA, Bona RL, Peyré-Tartaruga LA, Ribeiro JP. Ventilatory determinants of self-selected walking speed in chronic heart failure. Medicine and Science in Sports and Exercise. 2013;45(3):415-9. 11. Finatto P, Da Silva ES, Okamura AB, Almada BP, Oliveira HB, Peyré-Tartaruga LA. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners. PloS one. 2018;13(3):e0194057. 12. Full RJ. The concepts of efficiency and economy In: Blake R, editor. Efficiency and economy in animal physiology. Cambridge: Cambridge University Press; 1991. p. 97-131. 13. Gaesser GA, Brooks GA. Muscular efficiency during steady-rate exercise: effects of speed and work rate. Journal of Applied Physiology. 1975;38(6):1132-9. 14. Gomeñuka N, Bona RL, Rosa RG, Peyré‐Tartaruga LA. Adaptations to changing speed, load, and gradient in human walking: cost of transport, optimal speed, and pendulum. Scandinavian Journal of Medicine & Science in Sports. 2014;24(3). 15. Hill AV. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London B: Biological Sciences. 1938;126(843):136-95. 16. Levison H, Cherniack R. Ventilatory cost of exercise in chronic obstructive pulmonary disease. Journal of Applied Physiology. 1968;25(1):21-7. 17. Margaria R. Positive and negative work performances and their efficiencies in human locomotion. European Journal of Applied Physiology and Occupational Physiology. 1968;25(4):339-51. 18. Mian OS, Thom JM, Ardigò LP, Narici MV, Minetti AE. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiologica. 2006;186(2):127-39. 19. Minetti AE. Passive tools for enhancing muscle-driven motion and locomotion. Journal of Experimental Biology. 2004;207(8):1265-72. 20. Minetti AE, Ardigò L, Saibene F. Mechanical determinants of gradient walking energetics in man. The Journal of Physiology. 1993;472(1):725-35. 21. Monteiro EP, Franzoni LT, Cubillos DM, Fagundes AO, Carvalho AR, Oliveira HB, Pantoja PD, Schuch FB, Rieder CR, Martinez FG, Peyré-Tartaruga LA. Effects of Nordic walking training on functional parameters in Parkinson's disease: a randomized controlled clinical trial. Scandinavian Journal of Medicine & Science in Sports. 2017;27(3):351-8. 22. Peyré-Tartaruga LA, Coertjens M. Locomotion as a Powerful Model to Study Integrative Physiology: Efficiency, Economy, and Power Relationship. Front. Physiol. 2018. 9:1789. https://doi.org/10.3389/fphys.2018.01789 23. Peyré-Tartaruga LA, Monteiro EP. A new integrative approach to evaluate pathological gait: locomotor rehabilitation index. Clinical Trials in Degenerative Diseases. 2016;1(1):86-90. 24. Pogliaghi S, Terziotti P, Cevese A, Balestreri F, Schena F. Adaptations to endurance training in the healthy elderly: arm cranking versus leg cycling. European Journal of Applied Physiology. 2006;97(6):723-31. 25. Pontzer H. Economy and Endurance in Human Evolution. Current Biology. 2017;27(12):R613-R21. 26. Saibene F, Minetti AE. Biomechanical and physiological aspects of legged locomotion in humans. European Journal of Applied Physiology. 2003;88(4):297-316. 27. Sanseverino MA, Pecchiari M, Bona RL, Berton DC, Queiroz FB, Gruet M, Peyré-Tartaruga LA. Limiting factors in walking performance of subjects with COPD. Respiratory Care. 2017:respcare. 05768. 28. Schmidt-Nielsen K. How animals work. 1972. Cambridge: Cambridge University Press. 114 p. 29. Tartaruga MP, Brisswalter J, Peyré-Tartaruga LA, Ávila AOV, Alberton CL, Coertjens M, Cadore EL, Tiggemann CL, Silva EM, Kruel LFM. The relationship between running economy and biomechanical variables in distance runners. Research Quarterly for Exercise and Sport. 2012;83(3):367-75. 30. Taylor CR, Rowntree V. Running on two or on four legs: which consumes more energy? Science. 1973;179(4069):186-7. 31. Thys H, Willems P, Saels P. Energy cost, mechanical work and muscular efficiency in swing-through gait with elbow crutches. Journal of Biomechanics. 1996;29(11):1473-82. 32. Williams KR, Cavanagh PR. Relationship between distance running mechanics, running economy, and performance. Journal of Applied Physiology. 1987;63(3):1236-45. 33. Zamparo P, Pendergast D, Termin B, Minetti AE. How fins affect the economy and efficiency of human swimming. Journal of Experimental Biology. 2002;205(17):2665-76.
|