

Universidade Federal do Piauí - UFPI Centro de Ciências da Natureza - CCN Programa de Pós-Graduação em Matemática

1	2	3	4	5	6	7	8	9	Nota

Exame de Acesso ao Mestrado Acadêmico em Matemática Teresina 03/11/2015

- 1. Marque V (Verdadeiro) ou F (Falso), justificando brevemente sua resposta:
 - (a) () Sejam $A, B \subseteq \mathbb{R}$. Então $Int(A \cup B) \neq Int(A) \cup Int(B)$ e $Int(A \cap B) = Int(A) \cap Int(B)$;
 - (b) () Sejam A, B subconjuntos de \mathbb{R} . Então $\overline{A \cap B} = \overline{A} \cap \overline{B}$ ou $\overline{A \cup B} \neq \overline{A} \cup \overline{B}$;
 - (c) () Dado um conjunto $X \subseteq \mathbb{R}$, denotamos por X' o conjunto dos seus pontos de acumulação. Se A, B são subconjuntos de \mathbb{R} , então $(A \cup B)' = A' \cup B'$ e $\bar{A} = A \cup A'$;
 - (d) () Sejam $I \subset \mathbb{R}, \ f: I \to \mathbb{R}$ e $a \in I$. Se existe o limite $\lim_{x \to a} f(x)$, então f é contínua no ponto a;
 - (e) () Sejam $I \subset \mathbb{R}$, um intervalo, e $f: I \to \mathbb{R}$ uma função derivável tal que $f'(x) \neq 0$ para todo $x \in Int(I)$, então f não possui ponto de mínimo ou de máximo;
 - (f) () Se a sequência de funções integráveis $f_n:[a,b]\to\mathbb{R}$ converge simplesmente para a função $f:[a,b]\to\mathbb{R}$, então f é integrável;
 - (g) () Se a sequência de funções $f_n:[a,b]\to\mathbb{R}$ converge uniformemente para a função $f:[a,b]\to\mathbb{R}$, então (f_n) converge simplesmente para f;
 - (h) () Se a sequência de funções $f_n:[a,b]\to\mathbb{R}$ converge uniformemente para a função $f:[a,b]\to\mathbb{R}$ e cada função f_n é contínua em $x_0\in[a,b]$, então f é contínua em x_0 .
- 2. Prove os seguintes itens sobre enumerabilidade de conjuntos:
 - (a) Seja A um conjunto enumerável e seja B_n o conjunto de todas as n-uplas (a_1, \ldots, a_n) , onde $a_k \in A$, $k = 1, \ldots, n$, e os elementos a_1, \ldots, a_n são não necessariamente distintos. Então B_n é enumerável;
 - (b) Use o item (a) para mostrar que o conjunto dos números racionais é enumerável.
- 3. Dizemos que uma série $\sum_{n=1}^{\infty} a_n$ é Cesàro-somável quando a sequência de Cesàro médias $(\sigma_n)_{n\in\mathbb{N}}$ definida por

$$\sigma_n = \frac{s_1 + s_2 + \dots + s_n}{n}$$

converge, onde $s_k = \sum_{n=1}^k a_n$.

- (a) Prove que toda série convergente é Cesàro-somável. Além disso, prove que se $\sum_{n=1}^{\infty} a_n = L$, então $\lim_{n \to \infty} \sigma_n = L$;
- (b) Dê um exemplo de uma sequência Cesàro-somável que não converge no sentido usual.

- 4. Considere o polinômio $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$, onde n é par. Mostre que existe $x_0 \in \mathbb{R}$ tal que $p(x_0) \le p(x)$, para todo $x \in \mathbb{R}$.
- 5. (a) Dado um número real 0 < r < 1, defina a função $f:(0,+\infty) \to \mathbb{R}$ por $f(x) = rx x^r + 1 r$. Prove que f(x) > 0 para todo $x \neq 1$;
 - (b) Sejam α, β números reais positivos tais $\alpha + \beta = 1$ e sejam a, b números reais positivos tais que $a \neq b$. Prove que $a^{\alpha}b^{\beta} < \alpha a + \beta b$.
- 6. Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x + e^x$.
 - (a) Mostre que f é bijetiva;
 - (b) Seja g a função inversa de f, mostre que g é derivável e calcule g'(1).
- 7. Seja $f:[a,b]\to\mathbb{R}$ uma função contínua. Defina $F:[a,b]\to\mathbb{R}$ por

$$F(x) = \int_{a}^{x} f(t)dt,$$

para todo $x \in [a, b]$. Prove que F é derivável e que F'(x) = f(x), para todo $x \in (a, b)$.

8. Seja $f:[0,1] \to \mathbb{R}$ uma função contínua tal que

$$\int_0^1 x^n f(x) dx = 0,$$

para todo número inteiro $n \geq 0$. Mostre que f é identicamente nula.

9. Mostre que a série de funções

$$\sum_{n=1}^{\infty} \frac{\operatorname{sen}(nx)}{n^{1+\alpha}}$$

converge uniformemente em \mathbb{R} , para todo $\alpha > 0$.

Bom Trabalho!