

Universidade Federal do Piauí - UFPI Centro de Ciências da Natureza - CCN Pós-Graduação em Matemática - PGMAT

1	2	3	4	5	6	7	8	Nота

Seleção do Doutorado Acadêmico Teresina 21/11/2019

Nome:	INSCRICÃO
NOME:	INSCRIÇAO.

- 1. Seja $V \subseteq \mathbb{R}^n$ um subespaço vetorial próprio. Prove que int $V = \emptyset$.
- 2. Sejam $\{X_j\}_{j\in\mathbb{N}}$ uma família enumerável de subconjuntos fechados de \mathbb{R}^n . Prove que se int $X_j=\emptyset$ para todo $j\in\mathbb{N}$, então int $\left(\bigcup_{j\in\mathbb{N}}X_j\right)=\emptyset$.
- 3. Prove que não existe uma função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ injetiva e de classe C^1 . E uma função contínua e injetiva $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, existe? Justifique sua resposta.
- 4. Sejam $F, G: \mathbb{R}^2 \longrightarrow \mathbb{R}$ funções de classe C^1 e tais que

$$\frac{\partial(F,G)}{\partial(x,y)} = 0$$
, em \mathbb{R}^2 .

Suponha que em um ponto $(x_0, y_0) \in \mathbb{R}^2$ temos que $\frac{\partial F}{\partial x}(x_0, y_0) \neq 0$ ou $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$. Seja $z_0 = F(x_0, y_0)$. Prove que existe uma vizinhança I de z_0 e uma função $\varphi : I \longrightarrow \mathbb{R}$ tal que $G(x, y) = \varphi(F(x, y))$.

- 5. Enuncie os teoremas da função inversa e da função implícita e prove que estes são equivalentes.
- 6. Se $X \subseteq \mathbb{R}^m$ tem medida nula, então para todo $Y \subseteq \mathbb{R}^n$, o produto cartesiano $X \times Y$ tem medida nula em \mathbb{R}^{m+n} .
- 7. Seja $Q \subseteq \mathbb{R}^n$ um retângulo fechado. Prove que toda função $f: Q \longrightarrow \mathbb{R}$ contínua é integrável.
- 8. Sejam $u, v: U \longrightarrow \mathbb{R}$ funções de classe C^2 definidas num aberto $U \subset \mathbb{R}^m$. Sejam $D \subseteq U$ um domínio compacto com fronteira regular. Aplicando o teorema da divergência ao campo de vetores $F = u \cdot \nabla v$ obtenha a primeira fórmula de Green:

$$\int_{D} [u\Delta v + \langle \nabla u, \nabla v \rangle] dx = \int_{\partial D} u \frac{dv}{\partial N}.$$

Bom Desempenho!