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Dynamic crop models that incorporate the effect of environmental variables can potentially explain yield differ-
ences associated with location, year, planting date, and cultivars with different growing cycles. Soybean (Glycine
max (L.) Mer.) cultivar coefficients for the DSSAT-CROPGRO model were calibrated from two growing seasons
(2012−2013) comprising 58 irrigated environments (site × year × planting date combinations) for cultivars
within maturity groups (MGs) 3 to 6 using end of season data (yield, seed weight, and seed oil and protein con-
centration) and previously calibrated phenology coefficients. Model accuracy after calibration of cultivar coeffi-
cients by MG (cultivars averaged within a MG) was similar compared to cultivar-specific coefficients. During
the subsequent growing season in 2014 (33 environments), the model efficiency (ME) for predicting yield was
0.40, with a root mean square error (RMSE) of 571 kg ha−1. Themodel was less efficient predicting seed number
and seed weight (ME= 0.06 and−0.06, respectively) than yield. The model was able to simulate differences in
seed oil concentration across environments andMGs (ME=0.52), but not protein concentration (ME=−0.25).
The analysis of yield stability had similar slopes for the observed and predicted yield regressions against an ob-
served environmental index (EI) thatwere only dependent on theMG. Simulated yieldswere significantly differ-
ent from the observedwhen EI N 0, but yield differences in the highest yielding environmentswere still relatively
small (245 to 608 kg ha−1). The results indicate an overall robust model performance in capturing G × E re-
sponses with coefficients calibrated by MG.
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1. Introduction

The use of crop simulation models to predict yield of irrigated soy-
bean (Glycine max (L.) Mer.) across the planting window and maturity
group (MG) choices available to growers can have wide applications
for identifying management strategies that optimize yield, water pro-
ductivity and economic returns while minimizing risks. The accurate
prediction of the soybean yield response across different planting
date ×MG scenarios is critical beforemodels can be used to study differ-
ent management strategies.

Planting date and the choice of soybeanMGs are two of themain fac-
tors affecting yield that have been target of numerous studies (De Bruin
and Pedersen, 2008; Egli and Cornelius, 2009; Salmerόn et al., 2016).
Under irrigated conditions in the Midsouth, optimum planting dates
can range from late March to mid-May depending on the location and
MG (ranging from 3 to 6) (Salmerόn et al., 2016). Planting dates after
the optimum are often associated with yield reductions. When planting
dates were delayed from mid-May to beginning June, yield declined
from 0.09 to 1.69% per day of delay in planting (Salmerόn et al., 2016).
Results from the same regional project showed that MG 4 cultivars
were at the top of the yield ranking at most locations for both early
and late planting dates (Salmerόn et al., 2014). However, yields of MG
3 and 5 cultivars can have similar or greater yields than those of MG 4
cultivars at some locations and/or planting dates (Salmerόn et al.,
2016). The bestMG option for a given environment should consider fac-
tors other than yield such as irrigation costs, price premiums for a given
harvest date, as well as price premiums related to seed oil and protein
concentration (Popp et al., 2004).

Planting date affects the timing and length of main developmental
stages, and as a consequence the environmental factors that affect de-
termination of yield components during these stages (Pedersen and
Lauer, 2004). For instance, the amount of radiation intercepted, canopy
photosynthesis, or crop growth rate during flowering and early pod set
is related tofinal seed number (seedsm−2) and soybean yield (Andrade
et al., 2002; Egli and Yu, 1991; Jiang and Egli, 1995;Mathewet al., 2000),
and can explain yield differences associatedwith planting date (Egli and
Bruening, 2000; Egli and Yu, 1991). The choice of MG also affects the
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timing and length of developmental stages (Egli, 1993; Salmerόn and
Purcell, 2016). Dynamic crop models that simulate the effect of abiotic
environmental factors such as temperature, solar radiation, and
daylength on growth and development on a daily basis have the poten-
tial to partially explain yield differences due to year-to-year variability
as well as planting date and MG interactions on yield (Calvino et al.,
2003). Moreover, crop models that integrate a plant-soil-atmosphere
water balance can be used to study water requirements associated
with different climates and management options (Saseendran et al.,
2008) and could provide estimates of water requirements for different
MG and planting date combinations.

DSSAT-CROPGRO-Soybean is a dynamic crop simulation model that
incorporates algorithms describing soybean development, growth and
partitioning, as well as a carbon, nitrogen and water balance (Boote et
al., 1998b; Hoogenboom et al., 2012; Jones et al., 2003). CROPGRO sim-
ulates seed oil and protein concentration based on a carbon and nitro-
gen balance, cultivar specific target protein and oil concentrations, and
considers a temperature effect (Piper and Boote, 1999). The CROPGRO
model has been previously used to simulate the effect of planting date
on the yield of soybean (Boote et al., 1997; Calvino et al., 2003; Egli
and Bruening, 1992) (the last citation with an earlier version, SOYGRO),
and to study the effect of management strategies and environmental
conditions on soybean productivity and irrigation requirements (Peart
et al., 1995). However, the model has not been previously tested for
its accuracy predicting seed oil and protein concentration across differ-
ent environments.

CROPGRO-Soybean requires calibration of 18 cultivar-specific vari-
ables usually referred to as “cultivar coefficients” that are related to cul-
tivar differences in sensitivity to photoperiod and temperature for
development, growth, partitioning, aswell as target oil and protein con-
centrations (seemore details in Boote et al., 1998b). Calibration of culti-
var coefficients for new cultivars in CROPGRO requires experimental
data across several environments, detailed measurements during the
growing season for biomass, leaf area and/or yield, and a stepwise opti-
mization procedure to estimate coefficients (see example for pigeonpea
in Alderman et al., 2015). The need of calibration of cultivar coefficients
for new cultivars can limit the use of complex crop models. As a result,
there is increasing interest in models that perform well with a limited
number of input coefficients (Setiyono et al., 2007 and 2010) and in ap-
proaches that allow calibration with phenology and end of season data
(Archontoulis et al., 2014; Irmak et al., 2000; Mavromatis et al., 2001).
Cultivar coefficients calibrated from typical information from soybean
performance trials enabled CROPGRO to reproduce the observed yield
ranking and much of the genotype × environment (G × E) interactions
(Mavromatis et al., 2001). Predictions of developmental stageswith cul-
tivar coefficients derived from soybean relative MG and plant growth
habit provided similar accuracy to those with cultivar specific coeffi-
cients (Salmerόn and Purcell, 2016). The aim of this study was: (i) to
test the accuracy of DSSAT-CROPGRO for predicting yield, yield compo-
nents and seed oil and protein concentration using generic cultivar co-
efficients based upon MG and calibrated for the conditions in the
Table 1
Locations, latitudes, range of planting dates, soil type, row spacing, and soil type.

Location Lat
(°N)

2012 2013

Columbia, MO 38.9 – 4/22–6/25
Portageville, MO 36.4 4/2–6/12 4/9–6/20
Fayetteville, AR 36.1 6/7 6/8
Milan, TN 35.9 – 4/22–6/25
Keiser, AR 35.7 3/30–6/8 6/13–7/17
Verona, MS 34.2 3/21–6/7 4/23–6/17
Rohwer, AR 33.8 3/29–6/26 4/26–6/28
St. Joseph, LA 32.0 4/6–6/1 4/29–6/12
College St, TX 30.6 3/26–5/25 4/9–5/30
Midsouth, and (ii) evaluate the model applicability for reproducing ob-
served G × E interactions.

2. Material and methods

2.1. Experimental data from multi-location field experiments

Multi-location field experiments were conducted across the
Midsouth at seven locations in 2012 and nine locations in 2013 and
2014 (Table 1). The experimental design was a split-plot, with planting
date as thewhole plot factor,MG as the second factor (3, 4, 5 and 6), and
four cultivars nested within each MG. At each location there were four
planting dates every year that ranged from 21 March to 17 July across
the whole study, with the exception of Fayetteville that had one single
planting date (Table 1). A total of 16 commercial cultivars were used
each year (four within each MG), with some of them being replaced
by a cultivar within the same MG from one year to another (Table 2).
All MG 3 and 4 cultivars exhibited an indeterminate growth type
habit, and MG 5 and 6 cultivars exhibited a determinate one (except
for an indeterminate MG 5 cultivar, AG5332). The row spacing and
soil textural class at each location are summarized in Table 1. The plot
size was 6 m long with four single or twin rows. Seeding rate was
35 seeds m−2. All experiments were furrow or sprinkler irrigated ac-
cording to the net evapotranspiration demand, calculated with a daily
balance of crop evapotranspiration, precipitation, and irrigation
(Purcell et al., 2007). Weather data (daily minimum and maximum
temperature and precipitation) were obtained from nearby weather
stations. Solar radiation was estimated from latitude, altitude, day of
year, and daily temperatures usingWeatherMan in DSSAT. The two cen-
tral rows of each plot were harvested (4.9 to 6 m) and grain moisture
was measured. Yield and weight of 100 seeds were expressed on a dry
weight basis formodel comparisons. Ratings of sudden death syndrome
(binomial) and stem canker (binomial) were taken when disease inci-
dence was present at specific environments, and were used to remove
plots with a biotic stress from the dataset. Similarly, MG 6 cultivars
planted late in the most southern locations were removed from the
dataset when there was severe insect and fungal disease incidence. Oil
and protein concentrations from harvested seed subsamples were ana-
lyzed using near-infrared spectroscopy (Foss Instruments, model 1241,
Eden Prairie, MN).

Experimental yield data were analyzed with PROC GLM (SAS, v.9.2,
SAS Institute, Inc., Cary, N.C.), where year, location, planting dates, MG,
cultivars (nested withinMG and year), and their interactionswere con-
sidered as fixed effects. Blocks were grouped in two sets that shared the
same planting date and MG treatments to simplify harvest. Set and
block (nested within set) and their interactions with the fixed effects
were considered as random effects. The sum of squares from the analy-
sis of variance was grouped by sources of variation related to environ-
ment (year, location, planting date and their interactions), MG and its
interactions with environmental sources of variation, and cultivars
within MG and year (cultivar (MG*year)) and its interactions with
2014 Row sp.
(cm)

Soil series

4/23–6/27 76 Mexico silt loam
4/22–6/17 76 Tiptonville silt loam
6/17 48 Captina silt loam
4/24–7/3 76 Routon silt loam
4/23–6/5 19 twins on 97 Sharkey silty clay
4/23–6/17 20 twins on 97 Leeper silty clay loam
4/21–6/30 48 and 19 twins on 97 Hebert silt loam
4/24–6/19 51 Sharkey clay
4/9–6/2 38 Westwood clay loam



Table 2
Soybean cultivars usedwithin eachmaturity group (MG) for each growing season and rel-
ative maturity group (rMG) provided by the seed companies.

MG

2012 2013 2014

Cultivar rMG Cultivar rMG Cultivar rMG

III 5N342R2 3.4 5N342R2 3.4 5N342R2 3.4
RT 3644 3.6 R2 36X82N 3.6 R2 36X82N 3.6
P93Y72 3.7 P93Y72 3.7 P39T67R 3.9
P93Y92 3.9 P93Y92 3.9 P93Y92 3.9

IV 42-M1 4.2 42-M1 4.2 42-M1 4.2
P94Y40 4.4 P94Y40 4.4 P46T21r 4.6
AG4732 4.7 AG4732 4.7 AG4730 4.7
REV49R11 4.9 REV48R33 4.8 REV48R33 4.8

V AG5332 5.3 AG5332 5.3 AG5332 5.3
AG5532 5.5 AG5532 5.5 AG5532 5.5
P95Y50 5.5 P95Y50 5.5 P54T94R 5.4
P5811RY 5.8 P5711RY 5.7 P5711RY 5.7

VI 6202-4 6.2 6202-4 6.2 AG6534 6.5
P96M60 6.6 AG6132 6.1 AG6132 6.1
AG6732 6.7 AG6732 6.7 AG6730 6.7
HBKR7028 7.0 P6710RY 6.7 P6710RY 6.7
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environment. The percentage of sum of squares in the model explained
byeach group of sources of variationwas calculated by dividing the total
sum of squares in the model and multiplying by 100.

2.2. Calibration of growth cultivar coefficients

The DSSAT model v. 4.5.1.023 was used for this study. A detailed de-
scription of the processes in CROPGRO is provided in Boote et al.
(1998b). DSSAT-CROPGRO has a total of 18 cultivar coefficients related
to growth, photosynthesis, and partitioning that usually require calibra-
tion at the cultivar level (Table 3). Cultivar coefficients related to phenol-
ogy (CSDL, PPSEN, R1PPO, EM-FL, FL-SH, FL-SD, SD-PM) were previously
calibrated and evaluated for the same genotypes and environments
(Salmerόn and Purcell, 2016), or estimated from previous research
(Grimmet al., 1994; Grimmet al., 1993; Piper et al., 1996). The estimation
of phenology coefficients based on rMG and plant growth habit provided
similar accuracy to cultivar specific calibrations (Salmerόn and Purcell,
2016), so cultivar coefficients related to phenology were estimated
using the same approach in this study (Table 3). For the calibration of
the remaining 12 cultivar coefficients, end-of-season data from 2012
and 2013 across all locations and treatments (n = 25 to 58 for each
Table 3
Calibrated generic growth coefficients by MG with data from 2012 and 2013.

Cultivar coefficients Definition and units

CSDLa Critical short day length below which reproductive development p
PPSENb Slope of the relative response of development to photoperiod with
R1PPOb Increase in daylength sensitivity after anthesis, CSDL decreases by
EM-FLa Time between plant emergence and flower appearance (R1) (phot
FL-SH Time between first flower and first pod (R3) (photothermal days)
FL-SDa Time between first flower and first seed (R5) (photothermal days)
SD-PMa Time between first seed (R5) and physiological maturity (R7) (pho
FL-LF Time between first flower (R1) and end of leaf expansion (phototh
LFMAX Maximum leaf photosynthesis rate at 30°C, 350 vpm CO2, and high
SLAVR Specific leaf area of cultivar under standard growth conditions (cm
SIZLF Maximum size of full leaf (three leaflets) (cm2)
XFRT Maximum fraction of daily growth that is partitioned to seed + sh
WTPSD Maximum weight per seed (g)
SFDUR Seed filling duration for pod cohort at standard growth conditions
SDPDV Average seed per pod under standard growing conditions (seeds/p
PODUR Time required for cultivar to reach final pod load under optimal co
THRSH The maximum percent ratio of seed/(seed + shell) at maturity cau
SDPRO Fraction protein in seeds (g(protein)/g(seed))
SDLIP Fraction oil in seeds (g(oil)/g(seed))

a Estimated according to Salmerόn and Purcell (2016).
b Coefficients solved by Grimm et al. (1993, 1994) and Piper et al. (1996).
cultivar) were used. The experimental data used for calibration included:
harvest yield (kg ha−1 in dry weight), unit seed weight (g per unit seed),
and oil and protein concentration in seed. Protein concentrationwas con-
verted to nitrogen concentrationbydividingby a conversion factor of 5.64
(Mariotti et al., 2008).

The Generalized Likelihood Uncertainty Analysis (GLUE) optimization
tool included in DSSAT (He et al., 2009) was used to estimate coefficients
that minimize the error in the prediction of the observed end-of-season
data across all environments. The calibration of oil andprotein coefficients
(SDLIP and SDPRO) was implemented outside of the GLUE interface but
following the same methodology described in Beven and Binley (1992).
Given the large number of growth coefficients to calibrate (n = 12,
Table 3), the number of randomized sets of cultivar coefficients that
could be generated was very large (for 5 randomized values within
each coefficient there would be a total of 512 or N244 million possible
combinations). Therefore, the chance of obtaining a set of coefficients
with physiological relevance that minimized prediction error would be
very low if a large number of coefficients were optimized simultaneously.
For this reason, we used a sequential approach to calibrate the complete
set of cultivar coefficients related to growth (n = 12, Table 3) with data
availability limited to yield, seed growth, and oil and protein concentra-
tion (Table 4). The sequential calibration was comprised of eight steps,
where only up to three coefficients were calibrated at a time (Table 4).
The whole sequential calibration was repeated a second time. Initial
values for the coefficients at the beginning of the calibration procedure
were based on MG (Boote et al., 2001). The upper and lower limits
allowed for each cultivar coefficient were set based upon values from
Boote et al. (2001) (Table 4). One exception was the maximum seed
weight (WTPSD) in which the lower limit was reduced from 0.15 to
0.13 g seed−1 in Step 8, and for Step 6 and 8 in the second calibration.
The number of simulations within each step (number of randomized
sets of coefficients) was increased with the number of coefficients being
optimized and ranged from 100 to 20,000 simulations (Table 4).

In addition to the sequential calibration approach, a simultaneous cal-
ibration of all the coefficients (except for the ones related to oil and pro-
tein concentration) was conducted to test if the sequential calibration
was more efficient in reducing error in model predictions. The simulta-
neous calibration was conducted using GLUE to generate 200,000 sets of
cultivar coefficients. Thereafter, steps 7 and 8 in the sequential calibration
(Table 4) were followed to calibrate the coefficients affecting oil and pro-
tein and to allow a reduction in the lower limit of weight per seed
(WTPSD) as in the sequential calibration approach. Calibrations were
Calibrated coefficients by MG

3 4 5 6

rogresses with no daylength effect (h) 13.40 13.10 12.75 12.45
time (1/h) 0.285 0.294 0.302 0.311
this amount (h) 0.324 0.369 0.414 0.459
othermal days) 17.5 17.5 21 21

6.2 7.3 7.6 8.6
14.2 14.2 11.6 11.6

tothermal days) 34.4 35.4 32.8 32.8
ermal days) 26.0 19.2 15.0 15.2
light (mg CO2/m2-s) 1.02 0.94 0.92 0.92
2/g) 368.0 359.0 359.8 395.3

152.2 199.3 168.2 187.9
ell 0.95 1.00 1.00 0.90

0.154 0.158 0.130 0.130
(photothermal days) 19.0 23.9 23.6 23.0
od) 2.28 2.10 2.25 2.36
nditions (photothermal days) 11.84 13.55 10.76 7.52
sing seeds to stop growing when shells are filled 76.2 76.0 76.0 76.0

0.386 0.391 0.395 0.385
0.199 0.198 0.195 0.199



Table 4
Steps followed for the sequential calibration of DSSAT-CROPGRO-Soybean.

Seq. # Model coefficients Target observed
data

# of model
runs

Name Type† Range of variation
allowed

1 FL-LF CL 15–26 Yield 15,000
SIZLF CL 140–200

2 LFMAX CL 0.92–1.17 Yield 15,000
SLAVR CL 355–400

3 XFRT CL 0.9–1 Yield 100
4 SLPF Soil 0.78–1.00 Yield manual
5 THRSH CL 76–79 Yield 15,000

SDPDV CL 1.9–2.5
6 SFDUR CL 18–27 Grain unit mass 20,000

PODUR CL 6–14 Yield
WTPSD CL 0.15–0.22

7 SDLIP CL 0.17–22 % of oil in seeds 500
SDPRO CL 0.35–0.45 % of protein in seeds

8 SFDUR CL 18–27 Grain unit mass 20,000
PODUR CL 6–14 Yield
WTPSD CL 0.13–0.22

†CL: coefficient in cultivar file; SP: coefficient in species file; EC: Coefficient in ecotype file;
Soil: coefficient in soil file.
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performed for each cultivar in the 2012 and 2013 growing season (total of
21 different cultivars), and for observed data averaged across cultivars
within each MG from 3 to 6 (total of 4 “cultivars” in this case).

Preliminary calibrations indicated a significant overprediction of
yields of MG 6 cultivars. Calibrations after increasing leaf senescence
of old leaves by increasing sensitivity to low irradiation (modification
of ICMP and TCMP in the species file) improved yield predictions across
all MG cultivars. Therefore, the calibration proceduresmentioned above
were performed with default model settings and with settings for in-
creased leaf senescence (ICMP = 3.5, TCMP = 6 days).

The computation hardware at Arkansas High Performance Comput-
er Center (AHPCC) was used for performing parallel-wise DSSAT-GLUE
runs for each cultivar and MG average, for both calibration approaches
(sequential or simultaneous), and for the model with default and in-
creased leaf senescence (total of 100 simulations).

2.3. Estimation of soil parameters

Soil samples from all locations at different horizons were taken for
particle size analysis and estimates of percent clay, silt, and sand. The
soil parameters for themodel related towater holding capacity, saturated
hydraulic conductivity, bulk density and a root growth factor were esti-
matedwith the SoilBuild tool in DSSAT based on the particle size analysis.
Given that these experiments were irrigated, water limitations were con-
sidered to beminimal. The soil photosynthesis factor (SLPF) was estimat-
ed at each location and across all cultivars as part of the sequential
calibration (Table 4). Calibrated values of SLPF by location were 1 for Co-
lumbia, Fayetteville, and St. Joseph, 0.98 for Rohwer, 0.95 for Keiser, 0.93
for Milan, 0.89 for Verona, and 0.86 for Portageville and College Station.

2.4. Statistics for model evaluation

Statistics for evaluation of model performance were calculated for
observed data averaged across repetitions only, and therefore allowing
differences associatedwith cultivars within aMG. The rootmean square
error (RMSE) was calculated across all MGs and environments for each
variable analyzed (yield, seed number, seedweight, seed oil and protein
concentration) and also calculated across environments for each MG
separately (Eq. (1))

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

t¼1 ot−ptð Þ2
N

s
ð1Þ
Where ot is the observed variable for treatment t (cultivar (MG) × envi-
ronment combination), pt is the predicted variable for the same treat-
ment t, and N is the number of observations. In some cases results
were expressed as a normalized rootmean square error (NRMSE) by di-
viding by the observed average and expressing the value as a
percentage.

Similarly, the model efficiency (ME) was calculated across all envi-
ronments and MGs, and for each MG separately (Eq. (2)).

ME ¼ 1−
∑N

t¼1 ot−ptð Þ2

∑N
t¼1 ot−Ô

� �2 ð2Þ

Where Ô is the average yield across environments. Therefore, positive
values of ME indicate that the model is a better predictor than the aver-
age across environments.

The different calibration of growth cultivar coefficients (a sequential
or simultaneous approach with either default or increased settings for
leaf senescence) were compared in their ability to minimize the
NRMSE in the prediction of yield for each MG and maximize values of
ME. Thereafter, the calibration that showedmore accuracy in yield pre-
diction across all MG cultivars was used to further investigate themodel
accuracy in prediction of all the end of season data collected for both the
calibration dataset (2012 and 2013) and for the validation dataset
(2014).

2.5. Stability analysis of the genotype × environment interaction

To evaluate themodel accuracy in simulating the observed G × E in-
teraction, a stability analysis of the yield of each genotype across envi-
ronments in 2014 was conducted. Data from the two previous
growing seasons were not included in this analysis since the data
were used for calibration of cultivar coefficients. Simulated yields in
2014 were obtained with coefficients calibrated by MG with the se-
quential approach and the model setting with increased leaf senes-
cence. Each location and planting date combination was considered as
a separate environment. Only environments containing all MGs were
considered in the analysis (total of 31 environments after removing
planting dates 3 and 4 from College Station due to biotic stresses). An
environmental index (EI) value was calculated for each environment
as the mean observed yield for that environment minus the grand
mean across all cultivars and environments. Predicted and observed
yields were then fit to a straight-line regression model with the EI as
the independent variable. An analysis of covariance was conducted
using the MIXED procedure (SAS v.9.2., SAS Institute, Inc., Cary, N.C.)
where the slopes and intercepts were allowed to vary depending on
theMG and the source of the data (observed or simulated). The analysis
determinedwhether or not theMGand the data source had a significant
effect on the intercept and slope of the regressions.

3. Results

3.1. Experimental conditions and observed yields

The ANOVA of the observed yield showed that the sources of varia-
tion related to environment (year, location, planting date, and their in-
teractions) explained 47.4% of the variation in the total sum of
squares. The sources of variation related to the choice of MG alone com-
prised 9.5% of the total sum of squares, whereas the choice of cultivar
(nested within MG and year) comprised 1.9%. The sum of squares for
the interaction of MG with sources of variation related to environment
comprised 19.0% of the total sumof squares in themodel. Finally, the in-
teraction of cultivar (nested within MG and year) with other sources of
variation related to environment comprised 9.7% of the total sum of
squares in the model.
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3.2. Calibration of growth coefficients

Different approaches for calibration of growth cultivar coefficients
were compared for their accuracy to predict yield of MG 3 to 6 cultivars
across all year × location × planting date combinations in 2012 and
2013 (Fig. 1). Cultivar coefficients related to phenology were previously
estimated byMG or rMG and plant growth habit (Salmerón et al., 2016)
(Table 3) and were used for all the calibrations tested in this study. Pos-
itive values ofME in Fig. 1 indicate that themodel was a better predictor
of yield for a given MG across location × planting dates compared to
using the average yield of the MG across environments. Results prior
to calibration of growth coefficients (with generic cultivar coefficients
in DSSAT v. 4.5.1.023) showed that the model was already efficient
predicting yields for MGs 3 and 4 (ME = 0.51 and 0.47, respectively),
but was less accurate predicting yields of MGs 5 and 6 across environ-
ments (ME = 0.03 and −1.10, respectively) (Fig. 1). After calibration
of growth coefficients byMG andwith default settings for model senes-
cence, ME of MG 3 remained similar compared to using default generic
coefficients in DSSAT for both the simultaneous (ME=0.51) and the se-
quential calibration (ME=0.57).Model efficiency for yield ofMG 4 cul-
tivars calibratedwith defaultmodel settings for senescencewas 0.66 for
both the simultaneous and the sequential calibration, and thus im-
proved compared to using default model settings (ME = 0.47). The
model accuracy for yield prediction ofMG5 cultivars improved substan-
tially after calibration (0.55 and 0.52 for the simultaneous and sequen-
tial calibration) compared to using default coefficients (ME = 0.03).
Finally, yield predictions ofMG 6 cultivars were improved after a simul-
taneous calibration (ME = 0.07), and to a greater extent with the se-
quential calibration approach (ME = 0.32).

Interestingly, modifying the model settings to increase leaf senes-
cence under conditions of low irradiance greatly improved yield predic-
tions across all MG cultivars when using default coefficients in DSSAT
(ME = 0.57, 0.48, 0.53, 0.35 for MG 3, 4, 5 and 6, respectively) (Fig. 1).
Calibrations after changing the model settings for increased leaf senes-
cence also improvedME in yield prediction with both the simultaneous
and the sequential calibration compared to usingdefaultmodel settings,
with the exception of MG 4 cultivars where ME was already relatively
high. Overall, a sequential calibration and model settings for increased
leaf senescence were the approaches most likely to improve yield pre-
dictions across all MGs. Therefore, the cultivar coefficients calibrated
by MG for the abovementioned settings (coefficients are provided in
Table 3)were used to further evaluate themodel accuracy in simulating
the experimental end of season data and the observed G × E interaction
for the subsequent growing season. Comparison of ME in yield predic-
tion during 2014 with default coefficient and with different calibration
Fig. 1.Model efficiency (ME) in the prediction of soybean yield byMG (maturity group) during t
(2014). Model simulations were conducted with uncalibrated cultivar coefficients (default coe
cultivar coefficients. Results after a modification to increase senescence under low irradiance (
approaches further confirmed that the sequential calibration under set-
tings for increased senescence was the most consistent in maximizing
ME across all MGs (Fig. 1).

Cultivar-specific calibrations were also conducted for all the geno-
types in 2012 and 2013 (total of 21 different cultivars, Table 2) and cal-
ibration types (sequential vs. simultaneous, and with default and
increased senescence) to compare model accuracy with cultivar coeffi-
cients estimated by MG (data not shown). The ME results from the cul-
tivar-specific calibrations with default settings for leaf senescence were
similar for the simultaneous and sequential calibration (ME averaged
0.57, 0.65, 0.44, and 0.33 for MG 3, 4, 5, and 6, respectively). Calibration
of cultivar-specific coefficients under settings of increased senescence
improved ME across MGs with a simultaneous calibration (ME = 0.62,
0.65, 0.54, and 0.36 for MG 3, 4, 5, and 6, respectively) and to a greater
extent with a sequential calibration (ME = 0.64, 0.65, 0.58., and 0.54
for MG 3, 4, 5, and 6, respectively). Therefore, model accuracy was not
substantially improved when using cultivar-specific coefficients com-
pared to calibrations with cultivars averaged by MG (ME = 0.60, 0.64,
0.59, and 0.34 for MG 3, 4, 5, and 6, respectively). The analysis of the re-
lationship between the calibrated cultivar-specific coefficients and the
rMG provided by the seed companies (Table 2) indicated a decrease in
maximum seed size (WTSP) with later maturities (R2 = 0.58,
P b 0.001), as well as a decrease in the time to reach final pod load
(PODUR, R2 = 0.32, P b 0.001). On the other hand, the rest of calibrated
cultivar coefficients did not show a significant relationship with rMG
(data not shown).

3.3. Prediction of yield components and oil and protein concentrations

Results for the model evaluation in the prediction of end-of-season
data for the calibration dataset (2012–2013) and for the validation
dataset (2014) are presented in Table 5. Observed yields ranged from
1333 to 5527 kg ha−1 across all environments and MGs in 2012–2013
and from 1677 to 4893 kg ha−1 in 2014. After calibration of cultivar co-
efficients by MG, the model was efficient in predicting yield for all MGs
across planting dates and locations in 2012 and 2013 (ME = 0.34 to
0.64) with a low average bias (between −141 and −28 kg ha−1) and
a RMSE ranging from 509 to 570 kg ha−1. In 2014, the model was effi-
cient predicting yields of MG 3, 4, and 6 cultivars (ME = 0.44, 0.55
and 0.29, respectively). However, the negative values of ME for the
MG 5 cultivars in 2014 (ME = −0.26) indicate that the model was
less accurate in predicting yield of MG 5 cultivars across locations and
planting dates than using the average yield of MG 5 cultivars across en-
vironments. The bias (predicted – observed) shows that the low effi-
ciency in MG 5 cultivars in 2014 was due to a tendency to overpredict
he growing seasons used for calibration (2012–2013) and in the following growing season
fficients by MG in DSSAT v. 4.5.1.023) and after a simultaneous or sequential calibration of
Δ senescence) and with default model settings are presented.



Table 5
Model evaluation in the prediction of grain yield (kg ha−1), seed number (seeds m−2),
seed weight (g seed−1), and oil and protein concentration (%) during the calibration
(2012–2013) and for an independent growing season (2014). The following statistics
were calculated by comparing observed and predicted data for each cultivar and summa-
rized byMG: bias (predicted– observed),model efficiency (ME), and rootmean square er-
ror (RMSE). Simulations were performed with Cultivar coefficients calibrated by MG
(Table 3). Additionally, the RMSE of model predictions with cultivar specific coefficients
(RMSECUL) is provided for the calibration dataset.

MG

2012–2013 (calibration dataset) 2014 (evaluation dataset)

Obs Bias ME RMSE RMSECUL Obs Bias ME RMSE

Grain yield (kg ha−1)
3 3381 −119 0.60 552 522 3633 −196 0.44 514
4 3546 −94 0.64 514 505 3762 −52 0.55 494
5 3461 −28 0.59 509 513 3260 345 −0.26 644
6 3170 −141 0.34 570 476 2831 273 0.29 627
All 3409 −64 0.58 534 507 3394 83 0.40 571

Seed number (seeds m−2)
3 2243 −118 0.40 426 433 2465 −212 0.24 417
4 2466 −77 0.44 420 441 2666 −135 0.28 434
5 2636 7 0.52 365 417 2551 179 −0.25 481
6 2384 −81 0.07 498 389 2355 −54 −0.48 544
All 2436 −46 0.43 424 424 2515 −58 0.06 468

Seed weight (g seed−1)
3 0.151 −0.002 0.21 0.016 0.015 0.148 0.004 −0.23 0.016
4 0.144 −0.002 0.16 0.016 0.017 0.141 0.006 −0.59 0.015
5 0.129 −0.002 −0.05 0.016 0.016 0.128 0.004 −0.39 0.016
6 0.130 0.001 −0.51 0.018 0.016 0.121 0.015 −2.81 0.021
All 0.139 −0.002 0.29 0.016 0.016 0.135 0.007 −0.06 0.02

Oil concentration in seed (%)
3 20.1 −0.02 0.23 0.71 0.59 20.2 −0.26 0.15 0.95
4 20.0 −0.19 0.14 0.59 0.47 19.9 −0.36 0.29 0.63
5 19.3 0.01 0.32 0.58 0.58 19.0 0.00 0.48 0.60
6 19.1 −0.05 −0.23 0.96 0.81 18.6 −0.11 0.28 0.91
All 19.6 −0.06 0.36 0.70 0.61 19.5 −0.19 0.52 0.78

Protein concentration in seed (%)
3 35.2 −0.33 −0.58 1.62 1.62 34.6 −0.15 −0.22 1.54
4 35.2 0.28 −0.30 1.29 1.31 34.9 0.55 −0.19 1.00
5 35.4 0.37 −0.75 1.50 1.41 35.2 0.34 −0.41 1.21
6 35.7 −0.14 −0.54 1.41 1.16 35.3 −0.01 −0.65 1.34
All 35.4 0.06 −0.53 1.46 1.40 35.0 0.19 −0.25 1.29
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yield (345 kg ha−1 higher on average). Yields of MG 6 cultivars in 2014
were also overpredicted on average (bias = 273 kg ha−1), whereas
yields of MG 3 and 4 cultivars were underpredicted (bias of −196
and −52 kg ha−1, respectively).

The potential tominimize prediction errorswith cultivar specific cal-
ibrationswas quantifiedwith RMSECUL in 2012 and 2013.Model predic-
tionwith calibration of cultivar-specific coefficients slightly reduced the
overall RMSE to 507 kg ha−1 compared to using coefficients calibrated
by MG (RMSE = 534 kg ha−1). The most significant improvement in
model predictionswith cultivar-specific coefficients was for MG 6 culti-
vars (476 kg ha−1 compared with 570 kg ha−1 with coefficients cali-
brated by MG). Further testing of model predictions with an
independent group of genotypes would help further investigate the ap-
plicability of using generic coefficients based on MG rather than culti-
var-specific coefficients.

Observed values for seed number ranged from897 to 3958 seedsm−2

across all environments and MGs for the calibration dataset, and from
1189 to 3517 seedsm−2 in 2014. Observed seed numberwere on average
greater for MGs 4 and 5 compared to MGs 3 and 6 in both the calibration
and evaluation datasets (Table 5). For the 2012 and 2013 data, the model
was more efficient predicting seed number of MGs 3 to 5 (ME = 0.40 to
0.52) compared to MG 6 (ME = 0.07). The overall RMSE in prediction
of seed number in 2012 and 2013 was 424 seeds m−2 and did not im-
prove when using cultivar-specific coefficients (RMSECUL =
424 seedsm−2). For the evaluation dataset, themodel showed a lower ef-
ficiency in general (ME = 0.06), in particular for MG 5 and 6 cultivars
(ME b 0). The RMSE in the prediction of seed number in 2014 ranged
from 417 to 544 seedsm−2, with the error being greater for the laterma-
turities. On average, the model underpredicted seed number for MG 3, 4,
and 6 cultivars, and overpredicted seed number ofMG5 cultivars in 2014.

Observed seedweight ranged from 0.08 to 0.18 g seed−1 for the cal-
ibration dataset (2012−13), and from 0.10 to 0.17 g seed−1 for the val-
idation dataset. After calibration, the model was efficient predicting
seed weight of MG 3 and 4 cultivars (ME N 0.16), but not for MG 5
and 6 cultivars (ME b 0) (Table 5). Overall, the model was efficient
predicting seed weight across MGs and environments in 2012–2013
(ME = 0.29). However, in 2014, the model showed low efficiency in
general (ME = −0.06 across MGs) and within each MG
(ME = −0.23 to −2.81). The RMSE in the prediction of seed weight
normalized with the observed averages was 11.5% across MGs in
2012–2013, and 14.8% in 2014. Error in prediction of seed weight was
therefore lower relative to prediction of yield (15.7 and 16.8% for
2012–2013 and 2014, respectively) and seed number (17.4 and
18.6%). Overall, the model was more efficient in the prediction of yield
compared to prediction of seed number and seed weight.

Seed oil concentration for the calibration dataset ranged from17.5 to
21.7%, and from 15.9 to 21.8% for the validation dataset. The concentra-
tion of oil in seedswas predictedwith accuracy acrossMGs and environ-
ments in 2012–2013 (ME=0.36) and for the evaluation dataset in 2014
(ME = 0.52) (Table 5). The NRMSE in prediction of seed oil concentra-
tion was low in general, averaging 3.6 and 4.0% in 2012–2013 and in
2014, respectively. Simulations with cultivar-specific coefficients in
2012–2013 only had a small improvement in prediction of seed oil con-
centration (NRMSE = 3.1%).

Seed protein concentration ranged from 32.2 to 37.5% in 2012–2013
and from31.2 to 36.4 in 2014. Themodelwas not efficient in the predic-
tion of seed protein concentration, with negative values for ME in all
cases (Table 5). However, the NRMSE was low in general, averaging
4.1 and 3.7% in 2012–2013 and in 2014, respectively. Calibrations with
cultivar-specific coefficients had a small impact in the model accuracy
during 2012–2013 (NRMSE = 4.0%).

3.4. Prediction of the G × E interaction with an independent dataset

The analysis of the yield response to an environmental index (EI)
allowed a comparison of the observed and the predicted yield response
of each MG across environments (n= 31) during the 2014 growing sea-
son. The covariance model explained 74% of the yield variability after re-
moving non-significant effects. The interaction of EI with MG and data
source (observed vs. predicted) was left in the model to allow different
slopes in the regression of yield with the EI for observed and predicted
data. The analysis of covariance indicated that theMG choice had a signif-
icant effect on both the intercept and the slope of the regressions (Table
6). On the other hand, the source of the yield data (observed vs. predict-
ed) only had a significant effect depending on the MG in the intercept
of the regressions, and no significant effect on the slopes (Table 6). The re-
gressions of the observed and predicted yield versus EI byMG are provid-
ed in Fig. 2.

The analysis of lsmeans at different values of the EI was used to test
differences between observed and predicted yields within each MG
(Fig. 2). For environments lower yielding than the average
(EI b 0 kg ha−1), predicted yields were similar to observed yields for
MGs 3 to 5 (Fig. 2). For MG 6, only in very low yielding environments
(EI = −600 kg ha−1) were predicted yields similar to the observed.
For average to high yielding environments (EI N 0 kg ha−1), the model
underpredicted yields of MG 3 cultivars, and overpredicted yields of
MG5 and 6 cultivars. Only forMG4 cultivarswere simulated yields sim-
ilar to the observed across all environments. Under a very high yielding
environment (EI = 600 kg ha−1), the model error predicting yields of
MG 3 and 6 cultivars was reasonably small (−245 and 269 kg ha−1, re-
spectively). On the other hand, simulated yields of MG 5 cultivars were
608 kg ha−1 higher than the observed in a high yielding environment.



Table 6
Analysis of covariance for the regression of soybean yield on the environmental index (EI)
as an independent variable. Soybean maturity group (rMG), yield data source (observed
vs. predicted by the model; O vs. P), and the interactions of both were included as factors
in the model to test their effect on the intercept and slopes of the regressions.

Regression
parameter

Effect Num
DF

Den
DF

F
value

P-value

Intercept Maturity group (MG) 3 226 75.7 b0.0001
MG × O vs. P 4 226 7.6 b0.0001

Slope Environmental Index
(EI)

1 226 354.04 b0.0001

EI ∗ MG 3 226 7.17 0.0001
EI ∗ MG ∗ O vs. P 4 226 1.91 0.1089
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It is interesting to note from the analysis of yield stability in 2014 that
MG 3 and 4 cultivars had the highest yields on average (intercept in the
regression) andwere also themost responsive to changes in environment
(highest values for the slopes). In contrast,MG5 and6 cultivars had lower
yields on average and were less responsive to high yielding environ-
ments. This results in MG 4 cultivars being at the top of the yield ranking
in all environments, followed byMG 3 cultivars. Only in the lowest yield-
ing environments, did MG 5 cultivars have yields similar to MG 3 culti-
vars. The low intercept and slope in the regression for MG 6 cultivars
placed them at the bottom of the yield ranking in all environments. The
model mimicked the observed yield ranking well except for MG 5 culti-
vars, which were ranked before MG 3 cultivars in all environments.

4. Discussion

4.1. Calibration of cultivar coefficients by MG

The analysis of variance for observed yields across the three growing
seasons indicated that environment (year, location, planting date, and
MG 3
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Fig. 2. Individual regressions of soybean yield byMGand data source (observed and predicted y
and environment. The analysis of covariance explained 74% of the total sum of squares in th
probability level) between observed and predicted yields within a MG.
their interactions) had the largest effect on yield variability (47.4% of
the total sum of squares in the model). The percentage of the sum of
squares explained by the MG alone was smaller (9.5%) compared to
that of MG × environment (19.0%), indicating changes in the relative
performance of MG across environments. The sources of variation relat-
ed to the cultivar effect and its interaction with environment were rela-
tively small (11.6%) compared to that explained by the environment,
MG, and their interaction (75.9%). Therefore, it seemed reasonable to
calibrate cultivar coefficients in DSSAT-CROPGRO by MG and test the
model to predict yield differences associated with the planting date, lo-
cation, andMG. The simulation results for an independent growing sea-
son indicated that the model was more efficient predicting yield than
using the average yield of a MG across locations, except for MG 5, and
thereforewas able to partially explain the yield variation linked to envi-
ronment and MG choice. A large part of the difference in yield potential
among genotypes can be attributed to different environmental condi-
tions during critical developmental stages (Egli, 1993). Hence, the abil-
ity of the model to simulate the observed timing of developmental
stages across the environments and genotypes in this study (Salmerόn
and Purcell, 2016) was critical prior to calibrating and testing the
model for yield predictions.

Calibration of DSSAT-CROPGRO cultivar coefficients usually requires
detailed information collected during the season and across several en-
vironments or management systems in combination with a stepwise
calibration forminimization of error in prediction ofmeasured variables
(Alderman et al., 2015; Boote, 1999). This intensive data collection and
calibration can potentially allow interpretation of coefficients. For in-
stance, calibrated cultivar coefficients for new and old cultivars grown
at one location in Iowa provided understanding of the mechanisms of
genetic improvement (Boote et al., 2001). In this study, the previous
stepwise calibration approach was not possible since observed data
were limited to end-of-season measurements. In fact, given the need
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for intensive data collection and a complex non-trivial stepwise calibra-
tion, studies that calibrated DSSAT-CROPGRO cultivar coefficients relat-
ed to growth are either limited by the number of locations and latitudes,
by thenumber of plantingdates, or conducted on fewcultivars (Boote et
al., 1997).

One alternative to intensive data collection and calibration has been
the calibration with an “extensive” dataset from variety trials across a
wide range of environments but with limited observed data
(Mavromatis et al., 2001). Boote et al. (2001) recommended aminimum
of 20–30 site-year combinations, such as 3 years over seven sites differ-
ing in latitude and planting date for this calibration approach. In this
study, we initially observed large model errors with default coefficients
by MG in CROPGRO, in particular for MG 5 and 6 cultivars. When we
attempted to calibrate a large number of growth coefficients (n = 12),
the results indicated that a sequential calibration of 1 to 3 coefficients
at a time (with 500 to 20,000 combinations of coefficients sets) was
more efficient in improving yield predictions compared to a simulta-
neous calibration of all coefficients (with 200,000 combinations of coef-
ficients sets). However, one limitation in the sequential procedure is
that it can be dependent on the order in which coefficients are calibrat-
ed. Coefficients for complexmodels derived from limited end-of-season
data should be interpretedwith caution, since they are a result from op-
timizing tools to reduce prediction error andmight not necessarily have
a meaningful mechanistic or physiological interpretation.

CROPGRO is a source-driven model with a few exceptions (Boote et
al., 1998a). The fact that predictions improved after a model modifica-
tion that increased senescence suggests that there was a need for de-
creasing the assimilate source for late maturing MG 5 and 6 cultivars.
The lower values obtained for the calibrated maximum leaf photosyn-
thesis for MGs 5 and 6 (0.92), compared to MGs 3 and 4 (1.02 and
0.94, respectively) also support this finding. Moreover, the lower values
for XFRT (fraction of assimilates to reproductive organs) obtained for
MG 6 (0.90) compared to earlier maturities (0.95–1) further reduced
the assimilates partitioned to reproductive organs in MG 6 cultivars.
These results are consistent with a radiation interception study at two
locations in Arkansas that showed higher radiation interception for
MG5 and 6 cultivars compared toMG3 and 4 cultivars during the grow-
ing season despite thatMG5 and 6 cultivars had lower yields (Salmerόn
et al., 2015). Themechanism that explains the possible lower net assim-
ilate supply to reproductive organs for late MG 5 and 6 cultivars grown
across environments in the Midsouth needs further investigation.

4.2. Prediction of yield components, and seed oil and protein concentration

The model wasmore efficient in the prediction of yield compared to
prediction of seed weight (g seed−1) and seed number (seeds m−2), in
particular during the independent growing season used for model eval-
uation (2014). During this growing season, in most cases the model
failed to predict yield components with more accuracy than using the
average value across environments. However, the model was still effi-
cient predicting final yield, except for MG 5 cultivars, due to a compen-
sation in the prediction error for seed weight and seed number.

CROPGRO calculates potential seed growth rate for a genotype based
on its maximum seed weight and duration of seedfill for pod cohort
(cultivar coefficients WTPSD and SFDUR, respectively). Pod set and
seed number are then estimated based on the assimilate supply and
the potential seed growth rate with an approach similar to Charles-
Edwards (1984) but computing a daily carbon and nitrogen balance
that takes into account the effect of temperature, water, and nitrogen
stress (Wilkerson et al., 1983). Genetic differences in seed growth rate
in soybean are controlled by the number of cells in the cotyledons
(Egli et al., 1981), and high temperatures during flowering and early
pod setting (33/28 °C day/night temperatures) reduce cell division
and seed growth rate (Egli and Wardlaw, 1980). CROPGRO accounts
for a temperature effect during flowering and pod set by increasing
flower abortion and reducing pod setting with a temperature function
(Egli and Wardlaw, 1980), but potential seed growth rate in the
model is notmodified. Temperatures during seedfill will affect potential
seed growth rate in CROPGRO, and final seed size will be further influ-
enced by an indirect effect of temperature on seedfill duration and by
leaf senescence. Based on the comparisons of the processes determining
yield component determination in CROPGRO with previous research, it
is possible that the low model accuracy was related to not accounting
for the effect of high temperatures on potential seed growth rate during
flowering and early pod set. High temperatures during this period
would reduce cell division and therefore potential seed growth rate be-
fore calculation of pods and seeds that can be set. This compensatory
error would explain the higher model accuracy predicting yield com-
pared to seed number and seed size.

To our knowledge, there are no prior studies evaluating the accuracy
of DSSAT-CROPGRO or another complexmechanistic cropmodel to pre-
dict seed oil concentrations across awide range of environments. It is in-
teresting to note the high model accuracy predicting seed oil
concentration for all the MGs across all the environments studied for
an independent growing season. Moreover, the model was able to
mimic how seed oil concentration decreased on average with later ma-
turities. Themodel uses a carbon balance approach inwhich increases in
predicted seed oil concentration will come at a higher energy cost and
have an impact on yield. Oil concentration increases with temperature,
with an optimum between 25 and 28 °C (Dornbos and Mullen, 1992;
Gibson and Mullen, 1996; Piper and Boote, 1999). CROPGRO incorpo-
rates a linear function that affects seed oil composition (Piper and
Boote, 1999) with a base and maximum average daily temperatures of
7.2 and 23.7 °C, respectively. The present research indicated that this
modeling approach was efficient in predicting seed oil concentration
across a wide range of environments and MGs in the Midsouth.

Model predictions of seed protein concentration had a small average
bias (0.03 to−0.55%) and a relatively small RMSE (1.00 to 1.54%). How-
ever, the model was not efficient reproducing the small changes in pro-
tein concentration observed across environments. Protein
concentration in seed has a genetic component (Brim and Burton,
1979). However, when performing simulations with cultivar-specific
coefficients during the 2012 and 2013 growing season, predictions of
protein concentration did not improve compared to using coefficients
calibrated byMG. Previous studies have shown goodmodel agreements
after calibration for prediction of seed N concentration in pigeonpea
(Alderman et al., 2015) and cumulative total N in soybean (Boote et
al., 1997). The response of seed protein concentration to temperature
has been inconsistent for temperatures below 28 °C (Piper and Boote,
1999; Wolf et al., 1982) and shows an increase at very high tempera-
tures (33/28 °C) (Wolf et al., 1982). CROPGRO uses a temperature func-
tion as a function of oil plus protein concentration to account for the
temperature effect in protein concentration that was estimated from
Piper and Boote (1999). The low model efficiency predicting protein
concentration in this study could be related to not accounting well for
the temperature effect during seed fill or due to inaccuracy in the N bal-
ance across environments.

4.3. Prediction of G × E interactions in the Midsouth

The objective of this study was to test a complex mechanistic crop
model to reproduce yield variation across locations, planting dates,
and MGs in the Midsouth. The results indicated that the model was
able to partially explain yield differences associated with genotype,
planting date and location (ME= 0.40 across all locations and environ-
ments). When evaluatingmodel predictions byMG, themodel was effi-
cient explaining differences across locations and planting dates for MGs
3 and 4 but not forMGs 5 and 6 due to yields being overpredicted on av-
erage. The RMSE for yield predictionwith cultivar coefficients calibrated
by MG during the independent growing season ranged from 494 to
644 kg ha−1. Othermodelswith limited data input have been able to re-
produce soybean yield differences across locations and planting dates in
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Nebraska, Iowa, and Indiana for treatments under near-optimal condi-
tions with a RMSE of 460 kg ha−1 (Setiyono et al., 2010). Previous stud-
ies testing DSSAT-CROPGRO to simulate yields across several
site × years included rainfed conditions and the effect of water limita-
tions on yield with RMSE values ranging from 363 to 559 kg ha−1

(Calvino et al., 2003; Irmak et al., 2000; Mavromatis et al., 2001;
Mavromatis et al., 2002). In the previous studies, the model accuracy
was partially related to the ability of the model to simulate water bal-
ance and yield reductions under water-limitation, and only partially
due to simulation of other environmental effects on yield determination
and calibration of cultivar coefficients. Under the irrigated conditions in
this experiment, themodelwas still efficient explaining part of theG×E
interaction. Moreover, for the relatively high yields in our study, the
NRMSE was quite low, with values of 14, 13, 20, and 22% for MG 3, 4,
5, and 6, respectively.

The analysis of yield stability for an independent growing season
also demonstrated the applicability of themodel to simulate G×E inter-
actions. In order to use a stability analysis technique to evaluate amodel
performance, it is essential to perform yield regressions with an EI cal-
culated from observed data and not from simulated data as in
Mavromatis et al. (2001). For this study, the analysis of covariance indi-
cated that the slopes of the regressions of the observed and simulated
yields with EI were similar within each MG. Therefore, the model was
able to reproduce the observed yield responses across environments as-
sociated with a given MG. Although the simulated yields did differ sig-
nificantly from the observed yields when EI N 0 in MG 3, 5 and 6
cultivars, yield differences in the most high yielding environments
were still relatively small (−245, 269, and 608 kg ha−1 for MG 3, 5,
and 6, respectively). Therefore, the stability analysis indicates an overall
robust model performance in capturing G × E responses.
5. Conclusion

The ability of DSSAT-CROPGRO to reproduce irrigated yield variation
across locations, planting dates, and soybean genotypes has wide appli-
cations for developingdecisionmanagement tools. The results indicated
that the model could partially explain yield differences associated with
MG, planting date and location, andwas efficient reproducing yield var-
iability across MGs and environments. Although yield was predicted
well, seed number and seed weight were predicted with less accuracy.
The model also predicted differences in seed oil concentration across
environments and MGs but was not efficient in predicting protein
concentration.

Model performance for predicting yield was similar when using cul-
tivar-specific coefficients aswhen using generic coefficients based upon
MGs. Although the use of cultivar coefficients calibrated byMG seemed
reasonable under the irrigated conditions in our experiment and for the
commercial cultivars studied, greater yield differences associated with
cultivar choices within a MG might be expected when introducing
more genetic variability or under water limited conditions.

Model performance was improved by increasing sensitivity of leaf
senescence to low-radiation levels, especially for later MGs. Further
evaluation of model simulations across environments in the Midsouth
with detailed measurements during the season is needed.

The analysis of yield stability for an independent growing season
with regressions of observed and predicted yields with an EI indicated
that themodelwas able tomimic the different yield responses to chang-
es in environment associated with the choice of MG. Although the
slopes of the regressions were similar for the observed and predicted
yields, for above average environments (EI N 0) simulated yields of
MG 3, 5 and 6 cultivars were significantly different from the observed.
However, yield differences in the most high-yielding environments
were still relatively small (245 to 608 kg ha−1). Overall, the results indi-
cated a robustmodel performance in capturingG×E responseswith co-
efficients calibrated by MG.
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