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A B S T R A C T

Satellite remote sensing has been widely used in the last decades for agricultural applications, both for assessing
vegetation condition and for subsequent yield prediction. Existing remote sensing-based methods to estimate
gross primary productivity (GPP), which is an important variable to indicate crop photosynthetic function and
stress, typically rely on empirical or semi-empirical approaches, which tend to over-simplify photosynthetic
mechanisms. In this work, we take advantage of all parallel developments in mechanistic photosynthesis
modeling and satellite data availability for an advanced monitoring of crop productivity. In particular, we
combine process-based modeling with the soil-canopy energy balance radiative transfer model (SCOPE) with
Sentinel-2 and Landsat 8 optical remote sensing data and machine learning methods in order to estimate crop
GPP. With this approach, we by-pass the need for an intermediate step to retrieve the set of vegetation bio-
physical parameters needed to accurately model photosynthesis, while still accounting for the complex processes
of the original physically-based model. Several implementations of the machine learning models are tested and
validated using simulated and flux tower-based GPP data. Our final neural network model is able to estimate
GPP at the tested flux tower sites with r2 of 0.92 and RMSE of 1.38 gC d−1m−2, which outperforms empirical
models based on vegetation indices. The first test of applicability of this model to Landsat 8 data showed good
results (r2 of 0.82 and RMSE of 1.97 gC d−1m−2), which suggests that our approach can be further applied to
other sensors. Modeling and testing is restricted to C3 crops in this study, but can be extended to C4 crops by
producing a new training dataset with SCOPE that accounts for the different photosynthetic pathways. Our
model successfully estimates GPP across a variety of C3 crop types and environmental conditions even though it
does not use any local information from the corresponding sites. This highlights its potential to map crop pro-
ductivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing
platforms.

1. Introduction

Monitoring spatio-temporal changes in the photosynthetic functioning
of agricultural lands is of paramount importance for many societal, en-
vironmental and economical challenges within the current scenario of
increasing demands of biofuels and food. In particular, the accurate esti-
mation of the gross primary productivity (GPP, amount of carbon fixed by
plants through photosynthesis) of agricultural lands is key for monitoring,

understanding and forecasting crop's status and potential yields. GPP at
various spatio-temporal scales (field, region, the globe) can be applied in
order to compare the impact of different management practices (e.g., til-
lage or crop rotation) and spatio-temporal variations in geographic and
meteorological conditions on crop photosynthesis (Baker and Griffis,
2005; Falge et al., 2002; Reeves et al., 2005).

Remote sensing provides consistent and systematic observations of
the Earth surface and has therefore remarkably contributed to crop
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monitoring on large scales. Satellite observations of crops have been
applied for crop vegetation monitoring, crop yield forecasting and
management decisions optimization by agriculture companies and
sectoral organizations (e.g., Mulla, 2013; Pinter et al., 2003; Pulwarty
and Sivakumar, 2014; Strachan et al., 2002; Wu et al., 2014). Over the
last decade, both quantity and quality (including spectral and spatial
resolution) of remote sensing data have been steadily increasing
(Belward and Skien, 2015). For example, the Sentinel-2 mission of the
European Copernicus program provides observations at a spatial re-
solution of 10–20m, at multiple spectral bands in visible to shortwave
infrared wavelengths with a 5-day revisit time, a long-term operation
commitment and a free and open data policy (Drusch et al., 2012),
which constitutes a great improvement as compared to other previous
and current missions in terms of agricultural application.

GPP is typically modeled with three different approaches: process-
based models (PBMs), semi-empirical light use efficiency (LUE) models
(e.g., Zhang et al., 2012), and data-driven statistical models (Jung et al.,
2011; Tramontana et al., 2016). PBMs are based on the mechanistic
description of photosynthetic biochemical processes, usually as de-
scribed in the Farquhar's photosynthesis model (Farquhar et al., 1980).
GPP is first computed at the leaf level and then scaled-up to the whole
canopy. In LUE models, GPP is explicitly decoupled into two terms: the
amount of absorbed photosynthetically active radiation (APAR) and the
LUE, the latter accounting for the effect of environmental conditions on
photosynthesis (Monteith, 1972). Usually biome-specific relationships
are established from empirical observations of GPP and APAR (e.g.,
Running et al., 2004), but Zhang et al. (2018) found that the expression
of LUE based on PAR absorption by canopy chlorophyll tends to con-
verge across biome types.

PBMs rely on more rigorous formulations than LUE models (e.g.,
Zhang et al., 2012), but they have the disadvantage of complexity and
uncertainty of their parametrization. Although these input parameters
for PBMs are interpreted as being more physical and biologically
meaningful, many of them may be unavailable or highly uncertain. On
the other hand, the fundamental assumptions underlying LUE models
–that plant canopies behave like a big single-leaf, and their LUE is in-
dependent of the directional nature of solar radiation and vegetation
structure– have been widely questioned already by Pury and Farquhar
(1997) and continue to be discussed with support of flux data mea-
surements (Gu et al., 2002; Propastin et al., 2012; Zhang et al., 2011).
Furthermore, it is unclear how well these empirical relationships hold
for spatial and temporal scales beyond those used to derive them, and
how they might change under altering environmental conditions (e.g.,
Xin et al., 2015). The most widely used LUE model is applied in the
Moderate Resolution Imaging Spectroradiometer (MODIS) GPP pro-
duct, MOD17 (Running et al., 2004), currently available (Collection 6)
globally at 8-day and 500m resolution (Running et al., 2015). Despite
general good performance of the model, evaluation of MOD17 for crops
showed that it usually underestimates GPP for certain crops, for ex-
ample soybeans and maize (e.g., Peng and Gitelson, 2012; Turner et al.,
2005). This can be partly explained by neglecting the high hetero-
geneity of different crop types and a coarse spatial resolution, which
does not allow separating observations of individual fields, as well as
different irrigation and fertilization practices that are important for
crop performance (Zhang et al., 2012). The VPM GPPV20 dataset –a
more recent global GPP product that utilized MODIS datasets together
with a reanalysis climate dataset and a land cover classification– was
based on an improved LUE theory that uses the energy absorbed by
chlorophyll (Zhang et al., 2017), and it's overall accuracy was relatively
high, though it also underestimated cropland GPP (by ∼15%).

A third approach to GPP estimation from remote sensing data is
based on linking GPP fluxes at flux tower locations with observations of
large spatial fields from satellites adopting advanced statistical and
machine learning (ML) algorithms that use input variables from climate
reanalysis and satellite data products (Jung et al., 2009; Jung et al.,
2011; Tramontana et al., 2016; Xiao et al., 2008), such as the Max

Planck Institute for Biogeochemistry (MPI-BCG) GPP product (Jung
et al., 2011). Such methods are powerful in application, but being es-
sentially a statistical approach, they share with more simple empirical
LUE models the disadvantage of lacking the capacity to extrapolate to
different conditions (Beer et al., 2010). In addition, the dataset needed
to train such ML approaches should be sufficiently representative and
cover a wide range of conditions, which is difficult in general and
especially at the start of new satellite missions when the collected data
is limited.

GPP was also previously estimated at a finer spatial resolution; e.g.
Gitelson et al. (2012) assessed crop GPP with the Landsat data (spatial
resolution of 30m). They used the concept of total crop chlorophyll
content, based on evaluation of performances of twelve vegetation in-
dices (VIs) for estimating GPP using ground-based measurements (Peng
and Gitelson, 2012). However, as these approaches use only simple VIs,
the increased number of bands in the Sentinel-2 satellites and ongoing
advancements in vegetation and GPP models motivate a more sophis-
ticated application of available reflectance bands and the development
of more flexible and powerful GPP algorithms.

In this work, we propose a hybrid approach for GPP estimation
(Camps-Valls et al., 2011; Verrelst et al., 2016) based on the combi-
nation of process-based radiative transfer models (RTMs) with Sentinel-
2 spectral reflectance data through ML algorithms. Rather than re-
trieving the biophysical parameters accounting for the impact of ca-
nopy structure and leaf pigments on the harvest of light, we convert
spectral reflectance and meteorological information into GPP directly
using statistical ML methods, such as random forests and neural net-
works. It is important to emphasize that the training is performed on
the modeled data, rather than flux tower GPP, which allows us to si-
mulate a broad range of conditions. This, as well as the use of all re-
flectance data (instead of derived products), makes the study different
from purely data driven ML algorithms such as that of Jung et al. (2011)
and LUE models like Gitelson et al. (2012). By adapting the same
modeled data for different spectral characteristics of various instru-
ments, our approach can remain consistent among multiple past and
future satellites and still make the use of all available bands. Further-
more, it also can be applied across the range of spatial dimensions,
independently of the footprints of the reference data used for the
training of empirical models.

For the RTM, we use the soil-canopy energy balance radiative
transfer model SCOPE to simulate the reflectance spectra, the light
distribution in the vegetation, and the GPP as a function of the vege-
tation structure. The SCOPE model incorporates leaf model Fluspect
(Vilfan et al., 2016) and canopy RTM 4SAIL (Verhoef et al., 2007),
which can also be used for retrieving vegetation variables, e.g., leaf area
index (LAI) and chlorophyll-a and b content (Cab), as well as absorbed
fraction of photosynthetically active radiation (fPAR) that is used as
input to a number of LUE models (e.g., Weiss and Baret, 2016). We
focus our investigation on soybeans and other C3 crops. However, the
same approach can be used for C4 crops, after running simulations with
appropriate biochemical settings (e.g., photochemical pathway, max-
imum carboxylation capacity, and temperature response).

This paper is structured as follows: in Section 2 we first introduce
the SCOPE model, the satellite and meteorological data, flux tower sites
for which our approach was tested, as well as other GPP models. We
also introduce the methods applied for the analysis of the simulated
data and the ML methods used. In Section 3, we analyze relationships
between vegetation parameters relevant for GPP modeling, as well as
the relationships between the components of the various LUE models,
based on broad SCOPE simulations. We also discuss the performance of
machine learning algorithms for different vegetation parameters, and
explain how and why we chose to model GPP. Afterwards, we compare
the results of our ML models applied to the satellite data with other GPP
models and flux tower estimates. Finally, in Section 4, we conclude our
findings and give an outlook for future work.
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2. Materials and methods

The overall process of creating and applying ML models for GPP
estimation is schematically shown in Fig. 1. For creating the synthetic
dataset we use the SCOPE model (Section 2.1). Afterwards, the model is
applied to the reflectance data of Sentinel-2 and Landsat 8 data (Section
2.2 and Section 2.3, respectively), and meteorological dataset GLDAS
2.1 (Section 2.4). Initially, we considered three different workflows to
estimate GPP (Fig. 2):

• retrieving vegetation parameters from satellite data, then running
the SCOPE model in a forward mode. In this case some vegetation
parameters are estimated, while others have to be set a-priori;
• retrieving fPAR from satellite data, then applying LUE model;
• estimate GPP directly from satellite and meteorological data.

To analyze these approaches and finally decide on the most suitable
method, we analyzed the synthetic dataset created with SCOPE. We
performed global sensitivity analyses (Section 2.7), examined the re-
lationships between fPAR, LUE and GPP, as well as tested ML algo-
rithms for retrieving various parameters (Section 2.8) using the mod-
eled dataset. Eventually, we applied the ML model of GPP directly to

satellite and meteorological data. We use data from flux tower sites
(Section 2.5) for a feasibility test, and simple GPP models based on
vegetation indices (Section 2.6) for comparison with our ML model.

2.1. The SCOPE model

The SCOPE model is a vertical (1-D) integrated radiative transfer
and energy balance model (van der Tol et al., 2009). SCOPE calculates
radiance spectra in the visible to thermal infrared range (0.4 to 50 μm)
as observed above the canopy, as well as the fluxes of water, heat and
carbon dioxide. SCOPE is continually updated, and recent significant
improvements were introduced to link chlorophyll-a vegetation fluor-
escence to the photosynthesis processes within the framework of the
Photosynthesis Study for the ESA FLEX mission (Mohammed et al.,
2014).

SCOPE integrates radiative transfer and energy balance calculations
at the level of individual leaves, as well as at the canopy level. The
spectral transmittance and reflectance of the leaves are calculated with
the Fluspect model (Vilfan et al., 2016). Radiative transfer within the
canopy is based on the 4SAIL model (Verhoef et al., 2007). The leaf
biochemical processes are based on Collatz et al. (1991) and Collatz
et al. (1992) for C3 and C4 plants, respectively. The geometry of the

Fig. 1. Flow chart of the processing chain applied in this work. The ML model is trained on the dataset created from SCOPE simulations, afterwards the ML model is
applied to the satellite and meteorological data.

Fig. 2. Workflows of three considered approaches to estimate GPP using data from SCOPE.
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vegetation is treated in a stochastic way, where a probability of a leaf
viewing in solar direction depends on the canopy parameters, and
subsequently the different biophysical processes for sunlit and shaded
components are considered. To simulate photosynthesis, SCOPE re-
quires inputs of meteorological forcing, vegetation structure para-
meters, leaf biophysical parameters, and optical and plant physiological
parameters. In the comparison of the simulated GPP (using Landsat data
and locally measured weather data) to flux tower measurements, Bayat
et al. (2018) found a typical root-mean-square error of
1.7 μmol s−1m−2 (for GPP of about 8 μmol s−1m−2, so about 20%
error), with an r2 of 0.65 during a drought episode. Their relatively low
r2 was mainly due to the overestimation of GPP during the drought.
They also showed that the accuracy can be improved by including
thermal information. More details on the SCOPE model can be found in
van der Tol et al. (2009).

Here, we used the most recent SCOPE model release (version 1.70),
in which optical coefficients used by the leaf model are consistent with
the latest PROSPECT-D model (Féret et al., 2017). In addition, a new
soil spectral reflectance Brightness-Shape-Moisture model (BSM)
(Verhoef et al., 2018), which is based on the Global Soil Vectors of
Jiang and Fang, (2012), has been added as an alternative to providing
an input soil spectrum. In the BSM model, dry soil spectra are ap-
proximated using the soil brightness (B), and “lat” and “long” para-
meters that define spectral shape effects, while SMC parameter ac-
counts for the soil moisture impact on the dry soil reflectance spectrum
(see Table 1). In addition, a biochemical routine has been updated so
that the internal CO2 concentration in the leaf is calculated iteratively.

We adapted the model to work in parallel computing within the
Matlab environment, and customized the input and output of the model
as follows:

1. Added GPP to the output data, since the default output of the model
covers only net canopy photosynthesis (GPP minus leaf dark re-
spiration).

2. Added an option to calculate leaf maximum carboxylation capacity
(Vcmax) at 25 °C (Vcmax

25 ), as a function of chlorophyll concentration
Cab, following (Houborg et al., 2013):

=V C2.5294 27.34,cmax ab
25 (1)

where Vcmax
25 is in [μmol m−2 s−1] and Cab in [μg cm−2].

2.2. Sentinel-2 data

Sentinel-2 is a wide-swath, high-resolution, and multi-spectral
imaging mission, supporting Copernicus Land Monitoring, including
the monitoring of vegetation, soil covers and water bodies, as well as
observation of inland waterways and coastal areas. The Sentinel-2
Multispectral Instrument (MSI) samples 13 spectral bands spanning
from the visible and the near infrared to the shortwave infrared
(Fig. 3), including two new spectral bands in the so-called red edge
region (at 705 nm and 740 nm), which are very important for re-
trieval of chlorophyll content (Clevers and Gitelson, 2013). The
spatial resolution varies from 10 m to 60 m depending on the
spectral band with a 290 km field of view (Drusch et al., 2012).
Three bands at 60 m are mainly dedicated for atmospheric correc-
tion and cloud screening, which leaves ten bands aimed at land
surface observations. Currently, there are two Sentinel-2 satellites
operating in tandem: Sentinel-2A was launched in June 2015, and
Sentinel-2B launched in March 2017, which enables a revisit time
of < 5 days.

We visually chose relatively cloud-free images over fields of in-
terest (see Section 2.5) for the years 2016–2017. These images were
atmospherically corrected using the Sen2Cor (version 2.4) algorithm,
converting top-of-atmosphere (TOA) reflectance into top-of-canopy

Table 1
List of varied input parameters used in SCOPE model simulations. In this study
we assumed uniform distribution of the input variables.

Symbol Parameter Unit Min Max

Leaf optical
Cab Chlorophyll-a and b content μg cm−2 11 90
Cca Carotenoid content μg cm−2 0 40
Cant Anthocyanins content μg cm−2 0 40
Cdm Dry matter content g cm−2 0.0 0.05
Cw Leaf water equivalent layer cm 0.0 0.1
Cs Senescent material fraction Fraction 0 0.9
N Leaf thickness parameter – 1 2.5

Canopy
LAI Leaf area index m2m−2 0 9
hc Vegetation height m 0.1 2

LIDFa Leaf inclination – −1 1
LIDFb Variation in leaf inclination – −1 1

Soil
SMC Volumetric soil moisture content in the

root zone
– 0.01 0.7

BSMBrightness BSM model parameter for soil
brightness

– 0.01 0.9

BSMlat BSM model parameter “lat” – 20 40
BSMlon BSM model parameter “long” – 45 65

Geometry
SZA Solar zenith angle Degree 0 85

Meteorology
Rin Broadband incoming shortwave

radiation (0.4–2.5 μm)
Wm−2 0 1400

Rli Broadband incoming longwave
radiation (2.5–50 μm)

Wm−2 0 400

Ta Air temperature °C −10 50
p Air pressure hPa 500 1030
ea Atmospheric vapour pressure hPa 0 125
u Wind speed m s−1 0 25

Fig. 3. Band settings of Sentinel-2A with respect to a typical vegetation reflectance spectrum. The bands in bold are those that overlap with Landsat 8 bands. The red
rectangle encloses the bands used in this study. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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(TOC) reflectance (Louis et al., 2016). In addition, Sen2Cor delivered
information on pixel quality (cloud, cloud shadow, etc.). We used this
information subsequently to evaluate more precisely if the images
were cloudy. In few cases, when available, we used atmospherically
corrected TOC data directly. Obtained TOC bands (B2–B8, B8a, B11,
B12) were re-sampled to a common resolution of 20 m using the SNAP
toolbox. We do not consider the effects of the resampling procedure,
as we eventually calculate a mean value of the GPP over the whole
fields.

2.3. Landsat 8 data

Landsat 8, a NASA and USGS collaboration, is the latest of
the Landsat series and was launched in February of 2013. Operational
Land Imager (OLI), an instrument onboard the Landsat 8 satellite, has
overall similar spectral coverage to Sentinel-2 (sharing six common
bands, see Fig. 3), but unfortunately does not cover as densely the ve-
getation red edge bands. The images of the Earth are collected with a
16-day repeat cycle, with a resolution of 30m for bands of our interest
(Storey et al., 2016).

We used in this study atmospherically corrected surface
reflectance from Landsat 8/OLI (USGS Landsat 8 Surface
Reflectance Tier 1) from the Google Earth Engine (GEE) platform
(Gorelick et al., 2017). These data have been atmospherically cor-
rected using LaSRC (Vermote et al., 2016) and include a cloud,
shadow, water and snow mask produced using CFMASK (Foga et al.,
2017), as well as a per-pixel saturation mask. We only used pixels
which were marked clear by pixel quality attributes generated from
the CFMASK algorithm.

2.4. Meteorological data

We used the meteorological data from Global Land Data
Assimilation System (GLDAS) 2.1 that ingests satellite and ground-
based observational data products to generate optimal fields of land
surface states and fluxes (Rodell et al., 2004). GLDAS has been devel-
oped jointly by National Aeronautics and Space Administration (NASA)
Goddard Space Flight Center (GSFC), and the National Oceanic and
Atmospheric Administration (NOAA) National Centers for Environ-
mental Prediction (NCEP). It extends from the year 2000 to present
with about one month latency and is updated monthly. Choosing this
dataset as meteorological input was also motivated by its availability on
GEE, which we plan to use in future for applying our GPP model
globally. We used 3-hourly GLDAS-2.1 land surface model data avail-
able through GEE with a resolution of 0.25°. The data was exported for
the dates of interest (availability of Sentinel-2 data) for the years
2016–2017. For Landsat 8 application, the GLDAS-2.1 data was used
directly in GEE to estimate GPP. We did not perform any spatial in-
terpolation, and used the meteorological data directly from the grid
cells covering the chosen fields.

2.5. Flux tower sites

We used data from four flux tower sites located in the USA (US-Ro1,
US-Ro2, US-Ro5, US-Ro6) and one site in Germany, DE-RuS (SE_EC_001
in the TERENO data portal http://teodoor.icg.kfa-juelich.de), for the

feasibility test of our GPP models. Information on the location of the
sites and crop types grown there can be found in Table 2. The sites were
chosen based on the type of crop (soybeans and other C3 crops). The
data was acquired for the dates of available Sentinel-2 observations for
the years 2016 and 2017. We obtained GPP data directly from the
Principle Investigators of the sites, and integrated half-hourly data to
daily GPP values, which were then used as the reference value for the
validation of our GPP model.

2.6. GPP estimated with vegetation indices

LUE models making use of VIs and incident photosynthetically ac-
tive radiation (PARin) to estimate GPP for crops, were also applied for a
comparison with our model. In previous studies different VIs were
tested using ground-based in situ reflectance measurements (Peng and
Gitelson, 2012), as well as Landsat (Gitelson et al., 2012) and MODIS
data (Peng et al., 2013). These studies suggested different equations for
GPP models using various VIs as input. The ones that showed the best
performance in these studies were also tested here (cf. Table 3). We
applied these approaches because they can be relatively easily adapted
for our case (Sentinel-2 data, daily values), as compared to studies using
MODIS data at 8-day temporal resolution and minimum 500m spatial
resolution (e.g. Wagle et al., 2015; Yuan et al., 2015; Q. Zhang et al.,
2014). For VIs using a red edge band, we tested both red edge Sentinel-
2 bands (B5 and B6), and eventually we chose B5, which led to higher
correlation with flux tower GPP than using B6. We calculated 45% of
daily integrated Rin values (following Running and Zhao, 2015) from
GLDAS 2.1 to obtain PARin (even though the original equations were
sometimes developed for PARin and sometimes for potential PARin). In
addition, since none of these equations was actually designed for the
band setting of Sentinel-2, we also established a linear function of red
edge NDVI (reNDVI) and PARin using the flux tower validation dataset
and calibrating the function directly on this data (cf. Table 3).

2.7. Global sensitivity analysis

Global sensitivity analysis (GSA) refers to a set of mathematical
techniques aimed to analyze how the variation in the output of a nu-
merical model can be attributed to variations of its inputs. Among
others, GSA can be applied to evaluate the relative importance of each
input variable in a model and can be used to identify the most influ-
ential variables affecting model outputs (Pianosi et al., 2015).

Here, we used the PAWN method (Pianosi and Wagener, 2015, the
name derived from these authors names), which employs the entire
model output distribution (cumulative distribution function, CDF) to
quantify the sensitivity of the parameters and therefore it is applicable
independently of the shape of the distribution. This is in contrast to
variance-based sensitivity analysis (VBSA) that uses only the output
variance, which might be not sufficient if the output distribution is
multi-modal or highly skewed (see Pianosi et al., 2015 for more de-
tails). In addition, PAWN can be tailored to focus on particular ranges of
the output, for instance extreme values (Pianosi et al., 2015). In the
PAWN method, the sensitivity of the model output to the parameters
due to direct and interaction effects is estimated with a PAWN total
sensitivity index (Ti). The PAWN index has a range of variation between
0 and 1, with larger values reflecting higher importance. An input can

Table 2
Details about the flux tower sites used in this study (Griffis et al., 2004; Ney and Graf, 2017).

Site ID Lon (°W) Lat (°N) Period Crops

US-Ro1 −93.0898 44.7143 2016 Soybeans
US-Ro2 −93.0888 44.7288 2016 Kura Clover only
US-Ro5 −93.0576 44.6910 2017 Soybean
US-Ro6 −93.0578 44.6946 2017 Wheat/Kura Clover
DE-RuS 6.4472 50.8659 2016 & 2017 Winter barley in spring 2016, a catch crop mixture in fall 2016 and sugar beet in 2017
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be concluded to be non-influential, when Ti is below a threshold that
depends on the chosen confidence level and the size of sample. The
parameter space was sampled using Latin Hypercube Sampling (LHS)
(McKay et al., 1979). In total, Nu+NcMPAWNnPAWN model runs are
needed to approximate the total sensitivity index of all MPAWN para-
meters, where Nu and Nc are the sample sizes of unconditional and
conditional CDFs, respectively, and nPAWN is the number of con-
ditioning values of the model input. GSA was performed using the SAFE
Toolbox (Pianosi et al., 2015).

2.8. Machine learning models

ML techniques map the relationship between the input (e.g., re-
flectances) and output (e.g., GPP) by fitting a flexible model directly to
the data. Unlike parametric models that define an input-output map-
ping function, whose definition depends on a fixed set of parameters,
the function in machine learning is typically non-parametric, nonlinear
and very flexible. The weights of the model are fitted by using a training
dataset (here provided by the forward modeling using SCOPE) in such a
way that the model should perform well (i.e. provide accurate predic-
tions) in a hold-out set, typically called validation or test dataset.
Verrelst et al. (2012) compared four ML regression algorithms as can-
didates for biophysical parameter retrieval for Sentinel-2 and -3 and
showed that Gaussian Process (GP) regression gave the most promising
results. However, the main limitation of GP regression is the high
computational cost for training and testing, as each test example has to
be compared to all training samples (Quionero-Candela and Rasmussen,
2005).

Therefore, having in mind effective and global application of the
developed models, we decided to eventually apply more efficient
methods in terms of computational cost, such as neural networks (NNs)
and random forests (RFs). Neural networks learn a relationship between
input and output variables by establishing a set of nonlinear units
(nodes with non-linear activation functions) organized in layers and
connected by weights and biases that are equivalent to the regression
parameters of classical parametric models (Bishop, 1995). They are a
popular tool in the analysis of remotely sensed data (e.g., Mas and
Flores, 2008), and have been already implemented in operational re-
trieval chains, including processing of Sentinel-2 data in the biophysical
processor of the Sentinel Application Platform SNAP (Weiss and Baret,
2016). Random forests (RFs) are ensemble methods, which mean that a
RF generates multiple estimators and aggregates their results. RFs can
model complex interactions among input variables and are relatively
robust with regard to outliers. They also have less parameters compared
with NNs (Breiman, 2001) and recently were successfully applied in
remote sensing applications (Tramontana et al., 2016; L. Wang et al.,
2016). We trained these ML algorithms for the retrieval of vegetation
parameters and modeling GPP using the data originated from the
SCOPE model only.

Two training setups were engineered for this purpose:

• Case 1: Retrieving canopy and leaf parameters as well as retrieving
fPAR. The input information is the reflectance data and the solar

zenith angle (SZA) of the satellite observation.
• Case 2: Directly retrieving GPP. Here the input information is the
reflectance data, SZA of observation, meteorological conditions, and
SZA of a given modeling time step (which changes during the day, as
opposite to the SZA of observation).

Multiple models were trained to estimate GPP, using reflectance
data at Sentinel-2 resolution with all ten spectral land bands, but also a
subset of bands that are common with Landsat 8 (i.e. B2, B3, B4, B8a,
B11, B12, cf. Fig. 3). The GPP models were eventually applied to sa-
tellite data and GLDAS 2.1 meteorological data (Rodell et al., 2004) at
20m spatial resolution (of the satellite data) and 3 h temporal resolu-
tion (temporal resolution of the meteorological dataset), for four tem-
poral points per day (when incoming shortwave radiation was above
zero). These values were then integrated to obtain daily values, which is
a typical scale at which GPP from remote sensing data is evaluated. To
compare data with flux tower measurements, we calculated daily GPP
for the fields by taking average of Sentinel-2 (or Landsat 8) pixels
within each field.

The ML regressions were applied in Python and were built using the
scikit-learn toolkit (Pedregosa et al., 2011). If not mentioned otherwise,
the settings of the ML models were set to default and the random state to 1.

2.9. Modeling set-up

We run multiple sets of SCOPE simulations to perform GSA (Section
2.7), and train ML algorithms (Section 2.8). Since the SCOPE model has
a large number of input parameters, we tried to limit the number of
considered parameters by building up on a recent study by Verrelst
et al. (2015), in which the driving parameters for reflectance and SIF
were investigated.

First of all, we focused on a number of vegetation and soil para-
meters that could be potentially retrieved from Sentinel-2 data. We
varied 15 leaf, canopy and soil parameters (see Table 1) assuming a
uniform distribution, while keeping other parameters constant. Fur-
thermore, the variables were considered independent. We acknowledge
that other distributions and assumptions might have led to a different
performance of our ML models. However, since we wanted to focus on
the concept of our approach, further optimization of ML algorithms is
beyond the scope of this study, especially when considering a small
validation dataset.

The value of Vcmax
25 (leaf maximum carboxylation capacity at 25 °C)

was set constant (Vcmax
25 =100 μmol m−2 s−1), or varied as a function of

Cab. The constant value of 100 μmol m−2 s−1 was chosen following Y.
Zhang et al. (2014), who applied it for SCOPE simulations for soybeans,
and is commonly estimated for C3 crops (Kattge et al., 2009;
Wullschleger, 1993). Since we focused on the vegetation and soil
parameters first, the meteorological conditions were set to default
SCOPE values (Rin=600Wm−2, Ta=20 °C, Rli=300Wm−2,
p=970 hPa, ea=15 hPa, u=2m s−1), as well as the SZA (30°). Re-
garding the geometry of observations, we used the constant values of
the observation zenith angle (0°) and the azimuthal difference between solar
and observation angle (90°), since both Sentinel-2 and Landsat 8 have a

Table 3
Summary of vegetation indices used in this study. ρgreen, ρred, ρred edge and ρNIR are reflectance in bands of green, red, red edge and near-infrared spectral regions and
they refer to Sentinel-2 bands B3 (560 nm), B4 (665 nm), B5 (705 nm) and B8 (842 nm), respectively.

Vegetation index (VI) VI abbreviation VI formula GPP
(x= VI× PARin)

Reference

Red edge chlorophyll index CIred edge ρNIR/ρred edge− 1 4.80 ln (x)− 37.93 Peng and Gitelson, 2012
Green chlorophyll index CIred edge ρNIR/ρgreen− 1 5.13 ln (x)− 46.92 Peng and Gitelson, 2012
Normalized difference vegetation index NDVI (ρNIR− ρred)/(ρNIR+ ρred) 2.07x−6.19 Gitelson et al., 2012
Green normalized difference vegetation index greenNDVI (ρNIR− ρgreen)/(ρgreen+ ρgreen) 2.86x−11.9 Gitelson et al., 2012
Enhanced vegetation index EVI 2.5(ρNIR− ρred)/(ρNIR+ 6ρred− 7.5ρblue+ 1) 2.26x−3.73 Peng et al., 2013
Red edge normalized difference vegetation index reNDVI (ρNIR− ρred edge)/(ρNIR+ ρred edge) 1.61x−1.75 This study
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relatively narrow field of view as well as quasi-nadir observations. We
point out that LIDFa and LIDFb parameters were not independently
sampled, but instead we used their sum (LIDFa+b) and their difference
(LIDFa−b). This is motivated by the fact that their (LIDFa and LIDFb)
values must be chosen such that the sum of their absolute values equals
to (or is smaller than) one, and therefore these parameters are not in-
dependent (Verhoef, 1998). As a solution we chose LIDFa+b and
LIDFa−b to vary independently between −1 and 1, and based on their
values we calculated LIDFa and LIDFb. For these settings, we run the
PAWN analyses, where Nu, Nc and nPAWN were set to 1000, 400 and 30,
respectively, which equaled to 181,000 simulations.

In order to train the ML GPP model, we additionally varied in si-
mulations meteorological parameters and solar zenith angle (SZA). To
cover a large range of vegetation and meteorological conditions, the
variable ranges were based on previous studies that performed satellite
retrievals and global sensitivity analysis of SCOPE data (Verrelst et al.,
2015; Y. Zhang et al., 2014). All 22 parameters (see Table 1) were
varied assuming uniform distribution (we run in total 177,000 simu-
lations). These simulations were then re-run with different SZAs. This
allows us to account for different SZAs at a given time step of GPP
modeling (as opposed to the SZA during the Sentinel-2 observation).
The SZAs in this scenario were chosen randomly between 0° and 85°. In
this final training dataset, reflectance, meteorological data and SZA of
observation are based on the original dataset, while GPP and SZA at a
given time step are based on the re-run simulations.

For some combinations, the energy balance has not converged
without adjusting the maximum iteration number or the maximum
accepted error in the energy balance. These cases were not included in
the training dataset for the ML model. This led to underrepresentation
of cases with small LAI. To resolve this problem, we additionally per-
formed a subset of calculations, where the value of LAI was set to 0.001,
while all other variables varied as before (which led to a number of
10,700 additional simulations). For these cases, regardless whether si-
mulations converged, we simply assigned the value of GPP to zero in all
these scenarios. This subset was afterwards included in the training
dataset to represent conditions of a very small (almost zero) LAI.

3. Results and discussion

This section gives empirical evidence of the performance of the
proposed scheme for GPP estimation. We start the analysis by exploring
the relative relevance of parameters using a sensitivity analysis ap-
proach. Then we examine the relationship between the components of

the LUE model. After this analysis we provide quantitative results of
GPP estimations using machine learning methods for the training and
validation datasets. Results are then further validated for some selected
flux towers and crops.

3.1. Predictor variables of GPP

We applied GSA to identify the most influential variables affecting
GPP. We focused on the vegetation and soil parameters that can be
potentially retrieved from the satellite data. Such an analysis should
help to decide which vegetation parameters ought to be estimated in
order to accurately estimate GPP with the SCOPE model. We used here
a dataset, where Vcmax

25 was varied as a function of Cab, while meteor-
ological conditions were constant. The results of PAWN indices com-
puted over the whole output range are shown in Fig. 4a.

LAI was the most influential input (TLAI of 0.97), followed by Cab

(Thc of 0.87), while other parameters were much less influential
(Ti < 0.5). In addition, we performed the PAWN analysis in the fol-
lowing three GPP sub-ranges: small (< 5 μmol CO2m−2 s−1), medium
(5–20 μmol CO2m−2 s−1) and high (> 20 μmol CO2m−2 s−1). The in-
fluences of input parameters vary substantially for different sub-ranges.
While LAI and Cab turned out to be the most influential parameters
predominantly for small and medium GPP, other variables (and espe-
cially hc) are also influential for high GPP (Fig. 4b–d). LAI is the
parameter that in general controls the presence and abundance of ve-
getation, and hence has a dominant role in determining GPP. The high
influence of Cab is due to its role in capturing light used for synthesis,
but also because Vcmax

25 is set as a function of Cab; hc is used in the model
to calculate the roughness length for the momentum of the canopy
displacement height, which in turn has an effect on the leaf tempera-
tures and the gradients of water and CO2 between the leaf surface and
the atmosphere. As a result, we observe a high influence of hc on GPP.
Eventually, for high GPP, most of vegetation parameters become re-
levant to a certain degree (Fig. 4d). For example, other leaf pigments
(content of carotenoid (Cca) and content of anthocyanins (Cant)), dry
matter content (Cdm) and canopy geometry parameters (LIDF) have all a
stronger influence for medium and high GPP than for low GPP. Opti-
cally active leaf components compete with each other for light to ab-
sorb, while canopy geometry alters the relationship between sunlit and
shaded leaves. The least influential vegetation variables are the leaf
thickness parameter (N), leaf water equivalent layer (Cw) and senescent
material fraction (Cs). Soil parameters have no influence in all cases.
This is due to fact that the effect of soil properties on photosynthesis is

Fig. 4. PAWN indices for GPP for simulations with Vcmax
25 dependent on Cab for (a) all data, or three GPP sub-ranges: (b) small (< 5 μmol CO2m−2 s−1); (c) medium

(5–20 μmol CO2m−2 s−1); and (d) high (> 20 μmol CO2m−2 s−1). The boxes represent single values estimated for each input parameter.
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not parameterized in the model.
The ranges of the input variables were chosen to be very broad in

order to cover many various scenarios (see Table 1), but at any given
time and place, their actual seasonal and daily variability can be very
different. However, since it is very difficult to determine with certainty
what is exactly probable for a global scale, we opted for including ra-
ther too much variability than too little. The description of the varia-
bility of each input parameter, including their range and distribution,
can significantly affect the GSA results. For example, considering only a
small range of pigment concentrations could decrease their influence on
the output parameters as seen in the GSA. On the other hand, the
parameter that has overall smaller influence can be sometimes the most
important one if it changes more drastically than other parameters.

The vegetation parameters (LAI and Cab) that emerged as the most
influential for estimating GPP, are exactly the ones that are often re-
trieved from remote-sensing data. However, more leaf and canopy
parameters are important for precise calculation of GPP, especially for
high GPP (which is often the case for crops, on which we focus in this
study). Therefore, in case of using the SCOPE model, multiple further
input variables should be estimated for running the model in the for-
ward mode. Many of these variables are more difficult to estimate, and
must be therefore assumed a priori, often with high uncertainties.
However, if these assumption are not well constrained, it makes the
global applications of such a complex model challenging.

3.2. Relationships between APAR and GPP

We also considered using SCOPE to estimate GPP by means of ap-
plying a LUE model, in which the only retrieved parameter would be
fPAR, while LUE would be assumed constant and adjusted only by
meteorological conditions (Fig. 2). In order to examine this application
scheme, we analyzed the relationships between the components of the
various LUE models (based on fPAR, fraction of PAR absorbed by
chlorophyll, fPARCab, or canopy chlorophyll content) as captured in
SCOPE. The relationships between APAR, APARCab (PAR absorbed by
chlorophyll), canopy chlorophyll content (LAI·Cab) and GPP were ex-
amined for a simple case of constant Vcmax

25 and constant (default in
SCOPE) meteorological conditions (Rin=600Wm−2, Ta=20 °C,
Rli=300Wm−2, p=970 hPa, ea=15 hPa, u=2m s−1). This was
done in order to dismiss the impact of biochemical variability on LUE.

Overall, obtained relationships are nonlinear, strongly scattered
and heteroscedastic (Fig. 5), which does not agree with the

assumptions made in the foreseen LUE model, where LUE would only
vary with meteorological conditions. These simulations were per-
formed for a constant irradiance and, therefore, the light response is
not as saturating as typical light response curves. Thus, all variability
is due to changes in leaf and canopy properties. However, it is im-
portant to keep in mind that this dataset includes strongly varied
combinations. By limiting the data variability, for example by nar-
rowing the relations between pigments and height of the canopy (e.g.,
Cca 15–35% of Cab, Cant 30–60% of Cab, hc 1.2–1.6 m, chosen just as an
example not to suggest any specific distributions), these relationships
become much more linear, with larger scatter of data points only for
high APARCab, APAR and canopy chlorophyll content. This agrees
with the GSA analysis, which also showed that the impact of more
parameters is larger for high GPP. Since we use constant Rin

(600Wm−2), this high variability towards larger values can be due to
the photosynthetic efficiency being mitigated in the excessive light by
other parameters (e.g., LIDFa that controls the angular distribution
and therefore the ratio of sunlit and shaded leaves). As compared to
APAR, APARCab appears to be a better parameter for estimating GPP.
In the case of canopy chlorophyll content, the relationship saturates
between 100 and 200 μg cm−2. Gitelson et al. (2016) directly related
GPP with canopy chlorophyll content and argued that GPP divided by
incident PAR remained invariant, supporting the concept of an opti-
mization of resource allocation (Field, 1991; Goetz and Prince, 1999).
Since we used constant Rin in our simulations, we can directly compare
the shapes of our curves with Gitelson et al. (2016). It is remarkable
that Gitelson et al., 2016 also reported that GPP was very sensitive to
canopy chlorophyll content up to 150 μg cm−2, and not so much for
canopy chlorophyll content above. Still, our results are more scattered
and show a higher variability of GPP. However, since we used only a
synthetic dataset, we can neither support nor refute their functional
convergence hypothesis.

In general, these results suggest that LUE can change due to dif-
ferences in leaf and canopy properties and that, by limiting the varia-
bility of the input variables, the SCOPE modeling results can converge
into a more constant LUE. However, the confining of the input para-
meter distribution is not straightforward when all possible cases have to
be accounted for. Nevertheless, as Zhang et al. (2018) found that
maximum LUE (based on APARCab) tends to converge across space and
time, this approach could be further improved when the specific dis-
tributions of input parameters and their co-dependencies are in-
vestigated in detail.

Fig. 5. Relationships between GPP and (a, d) APAR, (b, e) APARCab and (c, f) canopy chlorophyll content (LAI·Cab) for (top panel) the whole dataset and (bottom
panel) a selected subset (Cca 15–35% of Cab, Cant 30–60% of Cab, hc 1.2–1.6m). The data were calculated with SCOPE, assuming constant Vcmax

25 and constant
meteorological conditions as default in SCOPE (Rin=600Wm−2, Ta=20° C, Rli=300Wm−2, p=970 hPa, ea=15 hPa, u=2m s−1).
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3.3. Training of vegetation parameters and GPP models

Since before we were considering different workflows of estimating
GPP using SCOPE (Fig. 2), we also tested the performance of various ML
algorithms on the data modeled with SCOPE (dataset withVcmax

25 varying
as a function of Cab and changing meteorological conditions). In addi-
tion to GPP models, we compared performances of ML algorithms re-
trieving vegetation biophysical parameters using the SCOPE data. The
GPP model was trained using satellite and meteorology data, while the
other considered ML algorithms for LAI, canopy chlorophyll content
and fPARCab, used only satellite data. We used synthetic data to both
train and validate ML algorithms. Simulated samples from SCOPE were
hence divided into training (85%) and validation (15%) subsets. For
LAI, canopy chlorophyll content and fPARCab retrievals, we used all ten
(B2–B8, B8a, B11, B12) Sentinel-2 bands (reflectance output of SCOPE
convolved to Sentinel-2 bands using spectral response functions) and
the SZA of the observation. For models estimating GPP we used Sen-
tinel-2 bands, both SZAs (of the observation and the modeling step),
and the meteorological data.

We show results for NN, as RF gave similar results (data not shown).
First, to compare the performance of the NNs for different parameters,
we built a NN for each output separately. To minimize the effects of
different atmospheric corrections and to at least partly harmonize the
spectra across the sensors, for which we plan to apply our approach, we
normalized the reflectance data to their spectral integral. In future, it
would be optimal to use harmonized products, like e.g., Claverie et al.
(2018). In addition, all inputs were normalized to fall in the range
between zero and one (MinMax scaler). For this comparison, we used a
simple NN: two hidden layers with 12 neurons with rectified linear unit
function (ReLU). We also tested briefly other network structures, but
results were similar and are not shown.

The performance of NN models for validation subsets is shown in
Fig. 6 Our results show that retrieving vegetation parameters with a
good accuracy is, in general, problematic. Even LAI, which is a com-
monly retrieved parameter, is difficult to estimate with a certain ac-
curacy. For example, LAI has similar (even though much stronger) ef-
fects on the reflectance to LIDFa. Overall, retrieving multiple
parameters from a limited number of Sentinel-2 bands is by nature an
ill-posed inverse problem, where a set of possible solutions could lead to
a match between the measured and the simulated reflectance data.
Therefore, additional prior information can be helpful to improve the
solution (Combal et al., 2003).

Our NN model of LAI showed a worse performance than the LAI
retrieval that is implemented in SNAP, which is also using NN trained
on the PROSAIL data (Weiss and Baret, 2016). Their results were va-
lidated with an independent test dataset (simulated using the same
radiative transfer model), which also showed a minor LAI under-
estimation (but only around 6) and a much better performance overall.
In addition, a comparison of LAI derived from Sentinel-2 data using this
SNAP algorithm with a small set of non-destructive (optical) field re-
ference measurements showed a very good agreement, with r2 of 0.83
(Vuolo et al., 2016). There are several issues that might lead to the poor
performance of our NN model. First of all, we used a more recent
version of the SCOPE model with a higher number of input parameters,
which can make it more difficult to train NNs. Furthermore, not only a
number of input parameters, but also their distribution differs among
this study and Vuolo et al. (2016), who used a Gaussian distribution.
We used a uniform distribution and LHS in order to limit assumptions
on underlying parameters as much as possible, but using a Gaussian
distribution was shown to improve performance of the LAI retrieval in
case of Verger et al. (2011). However, since GPP retrieval performed
satisfactorily and it is the main focus in this study, we did not test
adding additional a priori assumptions. We also applied a normalization
of the satellite spectra to their sum across all bands, which might lead to
the loss of some information from the magnitude. Overall, this is an ill
posed problem, and an algorithm specifically designed to estimate LAI
may impose a number of conditions to regularize the problem, as
compared to our approach where we focus on GPP estimation.

NN performed better for canopy chlorophyll content and fPARCab

than for LAI (Fig. 6c and d), which agrees with the study of (Verger
et al. (2011). For canopy chlorophyll content, we obtained much better
performance (r2 of 0.74, as compared to r2 of 0.67 for LAI), with only
minor underestimation above 500 μg cm−2. For fPARCab, NN produced
much better results (r2 of 0.94), which shows that even though here we
were not able to retrieve leaf and canopy properties accurately, more
general characteristics of absorbed radiation can be retrieved well.
Therefore, at least the fPAR element of the LUE model can be well
observed using the Sentinel-2 data.

The GPP model performed much better than the LAI or canopy
chlorophyll content retrievals, though similarly to fPARCab, with a very
small bias (mean error= 0.2 CO2 s−1m−2) across the complete GPP
range (Fig. 6). This suggests that it may be possible and actually easier
to directly estimate GPP than to first retrieve other vegetation para-
meters, which would be then afterwards used to estimate GPP by

Fig. 6. Performances of NN models for (a) LAI, (b) canopy chlorophyll content (LAI·Cab), (c) fPARCab, and (d) GPP on the test dataset (the subset of SCOPE
simulations).
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running the original model in the forward mode. Good performance of
the GPP and fPARCab models also suggests that the important in-
formation is already available in the Sentinel-2 bands, despite the fact
that an accurate retrieval of leaf and canopy variables is very challen-
ging (e.g., Fig. 6). However, using retrieved fPARCab in the LUE model is
also not straightforward, as according to our previous analysis, LUE is
not constant in SCOPE (Section 3.2).

Therefore, we chose to apply the ML model of GPP directly to the
satellite data, instead of performing middle-step retrieval of vegetation
parameters followed by re-running the original model in the forward
mode. Our method makes the best use of the complexity of the process-
based model (here SCOPE) in conditions of limited information about
the system that we usually have, as it combines deep understanding of
photosynthesis as implemented in the original model with the ML al-
gorithms that are appropriate for the application to remote sensing data
on a global scale. In addition, the algorithm design makes it easy to
adjust or improve it, when the new version of the model is available -
the data for training would have to be re-calculated and the algorithm
re-trained, but it could be thereafter directly applied in an identical
manner. Furthermore, ML models can be trained on data from the same
model but with different spectral settings, which allows a global ap-
plication across a range of different satellites while still being based on
the same model.

Eventually, we also added LAI as an output to the ML models
trained primarily to retrieve GPP, since LAI is the most influential
parameter for GPP according to GSA. Although overall the perfor-
mances of both architectures were similar, we obtained a small im-
provement in the performance of ML for GPP in case of our final model
settings (of 0.01 for r2 and of 0.2 gC d−1m−2 for RMSE the training and
testing synthetic datasets). We considered different structures of the
final ML models, and tested their performances on the training, testing
and validation (from the flux tower) datasets (Tables 4 and 5). The
results for both NN and RF were overall very similar. However, RF was
in our case slightly affected by overfitting, since the determination
coefficients were higher for the training than for the testing datasets.
This was not the case for NNs, which had similar performance for
training and testing datasets. Therefore, we focus here on NN models,
while results for RF are shown in A.1. However, our approach in gen-
eral does not rely on any specific ML method.

For NNs, we varied the number of hidden layers, the number of
neurons per layers, the batch size (the number of training examples
utilized in one iteration) as well as activation functions for hidden
layers. After examination, we decided to use a batch size of 32, and
ReLU as the activation function because of its good performance and
low computational cost. Eventually, before finally applying ML algo-
rithms to satellite data, we re-trained these ML models with the whole
available SCOPE dataset. As for the numbers of hidden layers and
neurons per layers, many different settings gave similarly good results
for the synthetic dataset, so we ultimately compared the performances
of five chosen architectures with the flux tower data (r2 between 0.86

and 0.92, cf. Table 4). Eventually, we chose the NN model that per-
formed best on the flux tower validation dataset. The best settings
chosen for NN were afterwards applied to another ML model of GPP, for
which we used only Sentinel-2 bands shared with Landsat 8.

3.4. Application to Sentinel-2

The GPP model was applied to the processed Sentinel-2 data. The
comparison of resulting time series of GPP measured at flux towers and
estimated GPP are shown in Fig. 7, and the overall results are compared
in scatter plots in Fig. 8.

The NN model captures well the seasonal dynamics of the GPP, both
in terms of the magnitude, as well as of the phenology. The good per-
formance of the model is additionally confirmed by a strong linear re-
lationship that was established for all seasons (r2= 0.92). The model
successfully estimated GPP also outside of the growing season, and
precisely tracked the emergence and senescence/harvest.

It must be stated that these results are for clear-sky data. Spectral
reflectance data are affected by clouds, which is not accounted for in
our statistical training and introduces errors in GPP models. In the first
step of the selection of cloud-free days, Sentinel-2 cloud-free images
were chosen visually. However, additional cloud check (based on the
Sen2Cor classification of pixel into cloud, snow, shadow, etc.), showed
that we included few days when the fields were covered by thin clouds,
or partly by clouds and/or cloud shadows. These days show worse re-
sults (underestimation for most cases, cf. Fig. 12), which stresses the
importance of atmospheric correction and scene classification.

Our ML algorithms performed better as compared to VI models
(Fig. 8). However, the reNDVI model, which was fitted directly to the
flux tower dataset, also yielded good results (r2= 0.81 and
RMSE=2.16 gC d−1m−2). We note that for VI models, using the red
edge band in the reNDVI indeed improves GPP estimation as compared
to EVI, and such LUE models are already widely used and show an
overall good performance (e.g., Gitelson et al., 2012; Peng et al., 2013;
Wagle et al., 2015; Yuan et al., 2015; Q. Zhang et al., 2014). However,
we see the strength of our method not in directly outperforming em-
pirical models, but in its potential to be used across a range of instru-
ments with different spectral and spatial characteristics, and for a range
of different conditions that might not be captured by empirical models,
as a good performance of our model was obtained despite using no
empirical information. First of all, it proves that the SCOPE model
performs well and that it is a good and a reliable tool for coupled ra-
diative transfer and biochemical modeling and therefore for relating
reflectance data with GPP, also without having local information from
the site. Accordingly, a possible future global application looks very
promising.

The application of our approach to the Sentinel-2 data allows
agriculture observations at a sub-field scale. The importance of the
good spatial resolution is very clear when considering areas, which
despite being homogeneously croplands, consist in fact of variable crop
types. For example, as shown in Fig. 10, two observed fields (at flux-
tower sites US-Ro1 and US-Ro2) demonstrate very different phenology.
Kura Clover (which is a cover crop) was grown in 2016 at the site US-
Ro2, and is photosynthetically active during the whole summer, while
the phenology of soybeans is determined by planting and harvesting
time, and its growing season is much shorter than for Kura Clover.
Using Sentinel-2 images allows clear separation of different fields (not
always the case for observations with coarser spatial resolution), which
improves the differentiation of GPP among fields and therefore the
estimation of the timing of crop phenology stage.

There are generally many issues that can hamper the model per-
formance: the quality of the Sentinel-2 data and their atmospheric
correction, the quality and the coarse spatio-temporal resolution of
meteorological data, as well as the simplifications and assumptions
used within the original model itself (especially lack of consideration of
the soil moisture stress). However, even though there is no direct effect

Table 4
Performance (r2) of different NN models on training and test datasets (both with
SCOPE), as well as on the validation (val.) data from the flux tower sites. For
five different NN models we varied the number and size of hidden layers, as
shown in the table.

NN (hidden layers)

#1 #2 #3 #4 #5

(12,12) (20,20) (20,12) (12,12,12) (40,20,12)

GPP r2 train 0.92 0.93 0.92 0.93 0.96
GPP r2 test 0.92 0.94 0.92 0.93 0.95
LAI r2 test 0.58 0.62 0.62 0.59 0.68
GPP r2 val. 0.86 0.88 0.92 0.89 0.91
GPP RMSE val. 1.72 1.66 1.38 1.51 1.41
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Fig. 7. Time series of GPP estimated from flux towers (red), and modeled with NN (green). Data points correspond to the days for which a clear Sentinel-2 image was
available. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Relationships between daily flux tower GPP and GPP estimated using (a) NN, (b) EVI and (c) reNDVI. Functions used for VIs are shown in Table 3. The straight
line shows a 1:1 relationship.
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of soil moisture limitation within the model now, a prolonged stress is
expected to have an effect on the canopy (e.g., through a reduction in
Cab, and eventually in LAI) that will be captured later by SCOPE and
therefore by our ML model. We note that the applied flux tower dataset
covers only the two years when no significant drought stress was af-
fecting crops (even though these fields are not irrigated). The perfor-
mance during drought episodes could be improved further by including
thermal data (Bayat et al., 2018), which are however not available from
Sentinel-2 data. Besides the limitations of the original model itself, ML
algorithms are only a representation of the original model and do not
exactly mirror its behavior. We tried to minimize the effects of atmo-
spheric correction by normalizing the reflectance spectra. Nevertheless,
the model was strongly impacted by the presence of clouds (Fig. 12).

In addition, footprints for the flux towers were not known and
therefore we used a simple approach to calculate mean values over the
whole fields. The footprints of flux towers for agricultural sites were
estimated in previous studies to be up to 1–2 km (e.g., Chen et al., 2012;
H. Wang et al., 2016), but they vary with wind speed and direction,
turbulence intensity, surface roughness, measurement height, and at-
mospheric stability (Vesala et al., 2008), which can also lead to mis-
matches of flux tower and modeled estimates. Furthermore, we used
rather coarse meteorological data (resolution of 0.25°) that do not
capture finer spatial variability. We also do not explicitly account for
the noise in the data, even though the performance of our models is
affected by the uncertainties associated with the meteorological and
satellite input data as well as the radiative transfer model itself.

Overall, the GPP model performed best for soybeans, for which the
relationship between modeled and flux tower data was the most accu-
rate (US-Ro1 and US-Ro5), and worst for the De-RuS site (Fig. 8). To

apply our model to C4 crops, SCOPE simulations need to be redone
accounting for the different photosynthetic pathways of the dark re-
action of photosynthesis.

3.5. Application to Landsat 8

As the first attempt towards global application of our approach, we
tested it on Landsat 8 data. We used the same NN settings as for
Sentinel-2, but decreased the number of input satellite bands from ten
to six. First, we tested the performance of the model on the Sentinel-2
data at bands shared with Landsat 8, which led to a decrease in model
performance (r2= 0.77 and RMSE=2.27 gC d−1m−2, see Fig. 9). The
applied model had the same structure as the one chosen for the Sen-
tinel-2 band setting, and therefore it could be expected to perform
slightly better if specifically adjusted for Landsat 8.

Eventually we also applied NN model to the Landsat 8 data in GEE.
The parameters of the model (scaling of the input parameters and the
weights and intercepts of the neural network) were exported, and our
final NN model was implemented in GEE for Landsat 8 data. The results
were tested for the available flux tower data for the four sites in the USA
(US-Ro1-2, US-Ro5-6), as the data for the DE-RuS site was only ob-
tained for the Sentinel-2 overpasses. The overall performance of the
model was good, but GPP was overestimated outside of the growing
season (Fig. 9b).

The better performance of the model for Sentinel-2 bands suggests
that the red edge bands do indeed improve ML modeling of GPP, which
is also the case for the VI models. These bands have been shown to
improve chlorophyll content estimation (Clevers and Gitelson, 2013),
but in our case they seem to be especially useful for improving the

Fig. 10. Maps of estimated GPP using Sentinel-2 data over area neighboring the flux tower sites US-Ro1 and US-Ro2 for four days in summer 2016. The fields at these
sites are highlighted. Soybeans and Kura Clover were grown at US-Ro1 and US-Ro2 in 2016, respectively.

Fig. 9. Relationship between daily flux tower GPP and GPP estimated using (a) the subset of Sentinel-2 spectral bands that are also available in Landsat 8, (b) Landsat
8 data. The straight line shows a 1:1 relationship.
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model performance outside of the growing season (both for our ML
models as well as for VIs).

Applying our ML models to both instruments simultaneously clearly
increases the number of available data points for crop observations
(Fig. 11). Interestingly, for the US-Ro1 site there are many more
Landsat 8 observations available as compared to Sentinel-2, despite an
overall better revisit time of Sentinel-2 (as there were fewer cloudy days
during overpasses of Landsat 8). GPP values were quite similar among

the sensors, especially during the growing season, which suggests a
great potential to extend our approach to other instruments.

4. Conclusions and future work

Estimating photosynthesis of crops is crucial for the crop status
monitoring and the forecasting of the agricultural production, and can
be greatly supported by satellite remote sensing. Since recently, and

Fig. 11. Time series of GPP estimated from flux towers (blue), and modeled with NN using Sentinel-2 (orange) and Landsat 8 (green) data. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

A. Wolanin, et al. Remote Sensing of Environment 225 (2019) 441–457

453



partly due to the advent of Sentinel-2 satellites, an unprecedented
amount of data suitable for agriculture observations is available. Taking
advantage of recent developments in satellite remote sensing tech-
nology, advances in machine learning and more complex and detailed
models of photosynthetic processes, we developed a hybrid approach to
model GPP with satellite data.

We have combined the process-based model SCOPE with ML algo-
rithms to estimate GPP of C3 crops using satellite data and ancillary
meteorological information. Several approaches were tested, and our
final NN model estimated GPP at the tested flux towers very accurately
(with r2 of 0.92 and RMSE of 1.38 gC d−1m−2). ML models were more
accurate than VI models, including the reNDVI model fitted directly
into the flux tower dataset. Our proposed approach successfully esti-
mated GPP across a variety of crop types and environmental conditions,
also for time periods of no vegetation. This method was used for high
spatio-temporal resolution monitoring of crops with Sentinel-2 and
Landsat 8 data, but can be in fact further extended to other satellites.
The results are promising and suggest a way to bridge process-based
modeling for global application in an effective manner using a hybrid
approach. Our model does not use any additional local information
from the site, and therefore we plan to apply it globally using platforms
providing cloud computing technology. Extending our approach to
other sensors, including MODIS, will require additional accounting for
spectral differences and the more complex geometry of observations.
However, using data covering a longer time span will allow us to use a
more extensive flux tower dataset for validation (e.g., FLUXNET2015

dataset), and therefore will provide a good opportunity for further
model improvements. This will include testing a selection of the
training dataset (e.g., selecting input distribution, assuming de-
pendencies among parameters, adding noise to the data), model types
and architectures, as well as procedures performed for harmonization of
the datasets among satellites.
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Appendix A

A.1. RF

In the case of RF model of GPP, we tested settings including maximal depth, minimal samples leaf, as well as changing sample weight (in order to
better represent scenarios with small LAI). Similarly to NN, the tests performed on synthetic dataset gave similarly good results, so five models were
chosen to be compared with the flux tower data. The performances of these ML algorithms are shown in Table 5.

Table 5
Performance (r2) of different ML models on training and test datasets (both with SCOPE), as well as on the validation (val.) data from the flux tower sites. For five
different RF models, we varied maximum depth of the tree (MaxD), minimum number of samples required to be at a leaf node (MinLS), as well as sample weights
(SW). In the case of the settings SW v.1, we increased the sample weight of data points with GPP below 2 μmol CO2m−2 s−1 to 2, and for the settings SW v.2 to 20.

RF (settings)

#1 #2 #3 #4 #5

Default MaxD:20 MinLS:5 SW v.1 SW v.2

GPP r2 train 0.98 0.98 0.96 0.98 0.98
GPP r2 test 0.90 0.90 0.90 0.90 0.90
LAI r2 test 0.51 0.51 0.52 0.51 0.51
GPP r2 val. 0.84 0.84 0.85 0.87 0.89
GPP RMSE val. 1.98 1.99 1.93 1.70 1.58

The comparison of resulting time series of GPP measured at flux towers and GPP estimate with RF model (as well as NN model, including scenes
covered by thin clouds) are shown in Fig. 12, and the overall results are compared in scatter plots in Fig. 13.
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Fig. 12. Time series of GPP estimated from flux towers (red), and modeled with NN (green) and RF (blue). The straight line shows the GPP for only clear-sky dates,
while dotted images show the dates when fields were covered by thin clouds (that were not removed directly in the visual check of the images). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Relationship between daily flux tower GPP and GPP estimated using the RF model. The straight line shows a 1:1 relationship.

A. Wolanin, et al. Remote Sensing of Environment 225 (2019) 441–457

455



References

Baker, J.M., Griffis, T.J., 2005. Examining strategies to improve the carbon balance of
corn/soybean agriculture using eddy covariance and mass balance techniques. Agric.
For. Meteorol. 128 (3), 163–177.

Bayat, B., van der Tol, C., Verhoef, W., 2018. Integrating satellite optical and thermal
infrared observations for improving daily ecosystem functioning estimations during a
drought episode. Remote Sens. Environ. 209, 375–394.

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rdenbeck, C.,
Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G.,
Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O.,
Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial
gross carbon dioxide uptake: global distribution and covariation with climate.
Science 329 (5993), 834–838.

Belward, A.S., Skien, J.O., 2015. Who launched what, when and why; trends in global
land-cover observation capacity from civilian earth observation satellites. ISPRS J.
Photogramm. Remote Sens. 103, 115–128.

Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford University Press.
Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.
Camps-Valls, G., Tuia, D., Gómez-Chova, L., Jiménez, S., Malo, J., 2011. Remote Sensing

Image Processing, 1st edition. Morgan & Claypool Publishers.
Chen, B., Coops, N.C., Fu, D., Margolis, H.A., Amiro, B.D., Black, T.A., Arain, M.A., Barr,

A.G., Bourque, C.P.A., Flanagan, L.B., Lafleur, P.M., McCaughey, J.H., Wofsy, S.C.,
2012. Characterizing spatial representativeness of flux tower eddy-covariance mea-
surements across the Canadian Carbon Program Network using remote sensing and
footprint analysis. Remote Sens. Environ. 124, 742–755.

Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V.,
Justice, C., 2018. The harmonized Landsat and Sentinel-2 surface reflectance data set.
Remote Sens. Environ. 219, 145–161.

Clevers, J., Gitelson, A., 2013. Remote estimation of crop and grass chlorophyll and ni-
trogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs.
Geoinf. 23, 344–351.

Collatz, G.J., Ball, J.T., Grivet, C., Berry, J.A., 1991. Physiological and environmental
regulation of stomatal conductance, photosynthesis and transpiration: a model that
includes a laminar boundary layer. Agric. For. Meteorol. 54 (2), 107–136.

Collatz, G., Ribas-Carbo, M., Berry, J., 1992. Coupled photosynthesis-stomatal con-
ductance model for leaves of C4 plants. Funct. Plant Biol. 19 (5), 519–538.

Combal, B., Baret, F., Weiss, M., Trubuil, A., Mac, D., Pragnre, A., Myneni, R., Knyazikhin,
Y., Wang, L., 2003. Retrieval of canopy biophysical variables from bidirectional re-
flectance: using prior information to solve the ill-posed inverse problem. Remote
Sens. Environ. 84 (1), 1–15.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B.,
Isola, C., Laberinti, P., Martimort, P., et al., 2012. Sentinel-2: ESA's optical high-
resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36.

Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., Bernhofer,
C., Burba, G., Clement, R., Davis, K.J., Elbers, J.A., Goldstein, A.H., Grelle, A.,
Granier, A., Gumundsson, J., Hollinger, D., Kowalski, A.S., Katul, G., Law, B.E.,
Malhi, Y., Meyers, T., Monson, R.K., Munger, J.W., Oechel, W., Paw, U.K.T.,
Pilegaard, K., Rannik, L., Rebmann, C., Suyker, A., Valentini, R., Wilson, K., Wofsy,
S., 2002. Seasonality of ecosystem respiration and gross primary production as de-
rived from FLUXNET measurements. Agric. For. Meteorol. 113 (14), 53–74.

Farquhar, G.D., Caemmerer, S.v., Berry, J.A., 1980. A biochemical model of photo-
synthetic CO2 assimilation in leaves of C3 species. Planta 149 (1), 78–90.

Féret, J.B., Gitelson, A.A., Noble, S.D., Jacquemoud, S., 2017. PROSPECT-D: towards
modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ.
193, 204–215.

Field, C.B., 1991. Ecological scaling of carbon gain to stress and resource. In: Response of
Plants to Multiple Stresses. Academic Press, San Diego, pp. 35–65.

Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L.,
Dwyer, J.L., Hughes, M.J., Laue, B., Jun 2017. Cloud detection algorithm comparison
and validation for operational Landsat data products. Remote Sens. Environ. 194,
379–390.

Gitelson, A.A., Peng, Y., Masek, J.G., Rundquist, D.C., Verma, S., Suyker, A., Baker, J.M.,
Hatfield, J.L., Meyers, T., 2012. Remote estimation of crop gross primary production
with Landsat data. Remote Sens. Environ. 121, 404–414.

Gitelson, A.A., Peng, Y., Via, A., Arkebauer, T., Schepers, J.S., 2016. Efficiency of
chlorophyll in gross primary productivity: a proof of concept and application in
crops. J. Plant Physiol. 201, 101–110.

Goetz, S., Prince, S.D., 1999. Modelling terrestrial carbon exchange and storage: Evidence
and implications of functional convergence in light-use efficiency. In: Advances in
Ecological Research. vol. 28. Elsevier, pp. 57–92.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google
Earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ.
202, 18–27.

Griffis, T.J., Baker, J.M., Sargent, S.D., Tanner, B.D., Zhang, J., 2004. Measuring field-
scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and mi-
crometeorological techniques. Agric. For. Meteorol. 124 (1), 15–29.

Gu, L., Baldocchi, D., Verma, S.B., Black, T.A., Vesala, T., Falge, E.M., Dowty, P.R., 2002.
Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys.
Res. Atmos. 107 (D6), ACL 2–1.

Houborg, R., Cescatti, A., Migliavacca, M., Kustas, W.P., 2013. Satellite retrievals of leaf
chlorophyll and photosynthetic capacity for improved modeling of GPP. Agric. For.
Meteorol. 177, 10–23.

Jiang, C., Fang, H., 2012. Modeling soil reflectance using a global spectral library. In:
AGU Fall Meeting, 2012, (San Francisco).

Jung, M., Reichstein, M., Bondeau, A., 2009. Towards global empirical upscaling of
FLUXNET eddy covariance observations: validation of a model tree ensemble ap-
proach using a biosphere model. Biogeosciences 6 (10), 2001–2013.

Jung, M., Reichstein, M., Margolis, H.A., Cescatti, A., Richardson, A.D., Arain, M.A.,
Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G.,
Kutsch, W., Lasslop, G., Law, B.E., Lindroth, A., Merbold, L., Montagnani, L., Moors,
E.J., Papale, D., Sottocornola, M., Vaccari, F., Williams, C., 2011. Global patterns of
land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from
eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116.

Kattge, J., Knorr, W., Raddatz, T., Wirth, C., 2009. Quantifying photosynthetic capacity
and its relationship to leaf nitrogen content for global-scale terrestrial biosphere
models. Glob. Chang. Biol. 15 (4), 976–991.

Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., Cadau,
E., Gascon, F., August 2016. Sentinel-2 Sen2Cor: L2A processor for users. In:
Ouwehand, L. (Ed.), ESA Living Planet Symposium 2016. Vol. SP-740 of ESA Special
Publications (on CD). Spacebooks Online, pp. 1–8.

Mas, J.F., Flores, J.J., 2008. The application of artificial neural networks to the analysis of
remotely sensed data. Int. J. Remote Sens. 29 (3), 617–663.

McKay, M.D., Beckman, R.J., Conover, W.J., 1979. Comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21 (2), 239–245.

Mohammed, G., Ac, A., Daumard, F., Drusch, M., Galle, A., Goulas, Y., Magnani, F.,
Malenovsky, Z., Moreno, J., Olejnickova, J., Pernokis, D., Rivera, J., Verrelst, J.,
Rascher, C., van der Tol, C., Verhoef, W., Volta, A., 2014. FLEX/Sentinel-3 Tandem
Mission Photosynthesis Study an Investigation of Steady-State Chlorophyll
Fluorescence and Photosynthesis in Terrestrial Vegetation.

Monteith, J.L., 1972. Solar radiation and productivity in tropical ecosystems. J. Appl.
Ecol. 9 (3), 747–766.

Mulla, D.J., 2013. Twenty five years of remote sensing in precision agriculture: key ad-
vances and remaining knowledge gaps. Biosyst. Eng. 114 (4), 358–371.

Ney, P., Graf, A., Oct 2017. High-resolution vertical profile measurements for carbon
dioxide and water vapour concentrations within and above crop canopies. Bound.-
Layer Meteorol. 166 (3), 449–473.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., Duchesnay, D., 2011. Scikit-learn: machine learning in py-
thon. J. Mach. Learn. Res. 12 (Oct), 2825–2830.

Peng, Y., Gitelson, A.A., 2012. Remote estimation of gross primary productivity in soy-
bean and maize based on total crop chlorophyll content. Remote Sens. Environ. 117,
440–448.

Peng, Y., Gitelson, A.A., Sakamoto, T., 2013. Remote estimation of gross primary pro-
ductivity in crops using MODIS 250m data. Remote Sens. Environ. 128, 186–196.

Pianosi, F., Wagener, T., 2015. A simple and efficient method for global sensitivity ana-
lysis based on cumulative distribution functions. Environ. Model Softw. 67, 1–11.

Pianosi, F., Sarrazin, F., Wagener, T., 2015. A Matlab toolbox for global sensitivity ana-
lysis. Environ. Model Softw. 70, 80–85.

Pinter, J., Hatfield, J.L., Schepers, J.S., Barnes, E.M., Moran, M.S., Daughtry, C.S.T.,
Upchurch, D.R., 2003. Remote Sensing for Crop Management. Photogramm. Eng.
Remote Sens. 6, 647–664.

Propastin, P., Ibrom, A., Knohl, A., Erasmi, S., 2012. Effects of canopy photosynthesis
saturation on the estimation of gross primary productivity from MODIS data in a
tropical forest. Remote Sens. Environ. 121, 252–260.

Pulwarty, R.S., Sivakumar, M.V.K., 2014. Information systems in a changing climate:
early warnings and drought risk management. Weather Clim. Extremes 3, 14–21.

Pury, D.d., Farquhar, G., 1997. Simple scaling of photosynthesis from leaves to canopies
without the errors of big-leaf models. Plant Cell Environ. 20 (5), 537–557.

Quionero-Candela, J., Rasmussen, C.E., 2005. A unifying view of sparse approximate
Gaussian process regression. J. Mach. Learn. Res. 6 (Dec), 1939–1959.

Reeves, M.C., Zhao, M., Running, S.W., 2005. Usefulness and limits of MODIS GPP for
estimating wheat yield. Int. J. Remote Sens. 26 (7), 1403–1421.

Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault,
K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann,
D., Toll, D., 2004. The global land data assimilation system. Bull. Am. Meteorol. Soc.
85 (3), 381–394.

Running, S.W., Zhao, M., 2015. Daily GPP and annual NPP (MOD17A2/A3) products
NASA earth observing system MODIS land algorithm. In: MOD17 Users Guide.

Running, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M., Reeves, M., Hashimoto, H., 2004. A
continuous satellite-derived measure of global terrestrial primary production.
BioScience 54 (6), 547–560.

Running, S.W., Mu, Q., Zhao, M., 2015. MOD17A2H MODIS/Terra Gross Primary
Productivity 8-Day L4 Global 500m SIN Grid V006.

Storey, J., Roy, D.P., Masek, J., Gascon, F., Dwyer, J., Choate, M., 2016. A note on the
temporary misregistration of Landsat-8 Operational Land Imager (OLI) and sentinel-2
multi spectral instrument (MSI) imagery. Remote Sens. Environ. 186, 121–122.

Strachan, I.B., Pattey, E., Boisvert, J.B., 2002. Impact of nitrogen and environmental
conditions on corn as detected by hyperspectral reflectance. Remote Sens. Environ.
80 (2), 213–224.

Tramontana, G., Jung, M., Schwalm, C.R., Ichii, K., Camps-Valls, G., Ráduly, B.,
Reichstein, M., Arain, M.A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P.,
Sickert, S., Wolf, S., Papale, D., 2016. Predicting carbon dioxide and energy fluxes
across global fluxnet sites with regression algorithms. Biogeosciences 13 (14),
4291–4313.

Turner, D.P., Ritts, W.D., Cohen, W.B., Maeirsperger, T.K., Gower, S.T., Kirschbaum, A.A.,
Running, S.W., Zhao, M., Wofsy, S.C., Dunn, A.L., Law, B.E., Campbell, J.L., Oechel,
W.C., Kwon, H.J., Meyers, T.P., Small, E.E., Kurc, S.A., Gamon, J.A., 2005. Site-level
evaluation of satellite-based global terrestrial gross primary production and net

A. Wolanin, et al. Remote Sensing of Environment 225 (2019) 441–457

456

http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0005
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0005
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0005
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0010
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0010
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0010
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0015
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0015
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0015
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0015
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0015
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0015
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0020
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0020
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0020
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0025
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0030
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0035
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0035
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0040
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0040
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0040
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0040
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0040
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0045
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0045
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0045
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0050
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0050
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0050
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0055
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0055
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0055
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0060
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0060
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0065
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0065
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0065
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0065
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0075
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0075
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0075
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0080
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0080
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0080
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0080
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0080
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0080
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0080
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0085
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0085
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0090
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0090
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0090
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0095
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0095
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0100
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0100
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0100
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0100
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0105
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0105
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0105
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0110
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0110
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0110
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0115
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0115
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0115
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0120
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0120
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0120
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0125
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0125
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0125
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0130
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0130
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0130
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0135
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0135
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0135
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0140
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0140
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0145
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0145
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0145
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0150
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0150
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0150
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0150
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0150
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0150
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0155
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0155
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0155
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0160
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0160
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0160
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0160
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0165
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0165
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0170
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0170
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0170
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0175
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0175
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0175
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0175
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0175
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0180
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0180
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0185
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0185
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0190
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0190
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0190
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0195
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0195
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0195
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0195
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0200
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0200
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0200
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0205
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0205
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0210
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0210
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0215
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0215
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0220
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0220
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0220
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0225
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0225
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0225
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0230
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0230
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0235
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0235
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0240
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0240
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0245
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0245
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0250
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0250
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0250
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0250
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0255
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0255
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0260
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0260
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0260
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0265
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0265
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0270
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0270
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0270
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0275
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0275
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0275
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0280
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0280
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0280
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0280
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0280
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0285
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0285
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0285
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0285


primary production monitoring. Glob. Chang. Biol. 11 (4), 666–684.
van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., Su, Z., 2009. An integrated

model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature
and energy balance. Biogeosciences 6 (12), 3109–3129.

Verger, A., Baret, F., Camacho, F., Feb 2011. Optimal modalities for radiative transfer-
neural network estimation of canopy biophysical characteristics: evaluation over an
agricultural area with CHRIS/PROBA observations. Remote Sens. Environ. 115 (2),
415–426.

Verhoef, W., 1998. Theory of Radiative Transfer Models Applied in Optical Remote
Sensing of Vegetation Canopies. (Ph.D. thesis).

Verhoef, W., Jia, L., Xiao, Q., Su, Z., 2007. Unified optical-thermal four-stream radiative
transfer theory for homogeneous vegetation canopies. IEEE Trans. Geosci. Remote
Sens. 45 (6), 1808–1822.

Verhoef, W., van der Tol, C., Middleton, E.M., 2018. Hyperspectral radiative transfer
modeling to explore the combined retrieval of biophysical parameters and canopy
fluorescence from FLEX–Sentinel-3 tandem mission multi-sensor data. Remote Sens.
Environ. 204, 942–963.

Vermote, E., Justice, C., Claverie, M., Franch, B., Nov 2016. Preliminary analysis of the
performance of the Landsat 8/OLI land surface reflectance product. Remote Sens.
Environ. 185, 46–56.

Verrelst, J., Muoz, J., Alonso, L., Delegido, J., Rivera, J.P., Camps-Valls, G., Moreno, J.,
2012. Machine learning regression algorithms for biophysical parameter retrieval:
opportunities for Sentinel-2 and -3. Remote Sens. Environ. 118, 127–139.

Verrelst, J., Rivera, J.P., van der Tol, C., Magnani, F., Mohammed, G., Moreno, J., 2015.
Global sensitivity analysis of the SCOPE model: what drives simulated canopy-leaving
sun-induced fluorescence? Remote Sens. Environ. 166, 8–21.

Verrelst, J., Pablo Rivera, J., Gitelson, A., Delegido, J., Moreno, J., Camps-Valls, G., 2016.
Spectral band selection for vegetation properties retrieval using Gaussian processes
regression. Int. J. Appl. Earth Obs. Geoinf. 52, 554–567.

Vesala, T., Kljun, N., Rannik, Rinne, J., Sogachev, A., Markkanen, T., Sabelfeld, K., Foken,
T., Leclerc, M.Y., 2008. Flux and concentration footprint modelling: state of the art.
Environ. Pollut. 152 (3), 653–666.

Vilfan, N., van der Tol, C., Muller, O., Rascher, U., Verhoef, W., 2016. Fluspect-b: a model
for leaf fluorescence, reflectance and transmittance spectra. Remote Sens. Environ.
186, 596–615.

Vuolo, F., Tak, M., Pipitone, C., Zappa, L., Wenng, H., Immitzer, M., Weiss, M., Baret, F.,
Atzberger, C., 2016. Data service platform for Sentinel-2 surface reflectance and
value-added products: system use and examples. Remote Sens. 8 (11), 938.

Wagle, P., Xiao, X., Suyker, A.E., 2015. Estimation and analysis of gross primary pro-
duction of soybean under various management practices and drought conditions.
ISPRS J. Photogramm. Remote Sens. 99, 70–83.

Wang, H., Jia, G., Zhang, A., Miao, C., Wang, H., Jia, G., Zhang, A., Miao, C., 2016a.
Assessment of spatial representativeness of eddy covariance flux data from flux tower
to regional grid. Remote Sens. 8 (9), 742.

Wang, L., Zhou, X., Zhu, X., Dong, Z., Guo, W., 2016b. Estimation of biomass in wheat
using random forest regression algorithm and remote sensing data. Crop J. 4 (3),

212–219.
Weiss, M., Baret, F., 2016. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER,

Version 1.1.
Wu, B., Meng, J., Li, Q., Yan, N., Du, X., Zhang, M., Feb. 2014. Remote sensing-based

global crop monitoring: experiences with China's CropWatch system. Int. J. Digit.
Earth 7 (2), 113–137.

Wullschleger, S.D., 1993. Biochemical limitations to carbon assimilation in C3 plants. A
retrospective analysis of the a/ci curves from 109 species. J. Exp. Bot. 44 (5),
907–920.

Xiao, J., Zhuang, Q., Baldocchi, D.D., Law, B.E., Richardson, A.D., Chen, J., Oren, R.,
Starr, G., Noormets, A., Ma, S., Verma, S.B., Wharton, S., Wofsy, S.C., Bolstad, P.V.,
Burns, S.P., Cook, D.R., Curtis, P.S., Drake, B.G., Falk, M., Fischer, M.L., Foster, D.R.,
Gu, L., Hadley, J.L., Hollinger, D.Y., Katul, G.G., Litvak, M., Martin, T.A., Matamala,
R., McNulty, S., Meyers, T.P., Monson, R.K., Munger, J.W., Oechel, W.C., Paw, U.K.T.,
Schmid, H.P., Scott, R.L., Sun, G., Suyker, A.E., Torn, M.S., 2008. Estimation of net
ecosystem carbon exchange for the conterminous United States by combining MODIS
and AmeriFlux data. Agric. For. Meteorol. 148 (11), 1827–1847.

Xin, Q., Broich, M., Suyker, A.E., Yu, L., Gong, P., 2015. Multi-scale evaluation of light use
efficiency in MODIS gross primary productivity for croplands in the Midwestern
United States. Agric. For. Meteorol. 201, 111–119.

Yuan, W., Cai, W., Nguy-Robertson, A.L., Fang, H., Suyker, A.E., Chen, Y., Dong, W., Liu,
S., Zhang, H., 2015. Uncertainty in simulating gross primary production of cropland
ecosystem from satellite-based models. Agric. For. Meteorol. 207, 48–57.

Zhang, M., Yu, G.-R., Zhuang, J., Gentry, R., Fu, Y.-L., Sun, X.-M., Zhang, L.-M., Wen, X.-
F., Wang, Q.-F., Han, S.-J., Yan, J.-H., Zhang, Y.-P., Wang, Y.-F., Li, Y.-N., 2011.
Effects of cloudiness change on net ecosystem exchange, light use efficiency, and
water use efficiency in typical ecosystems of China. Agric. For. Meteorol. 151 (7),
803–816.

Zhang, F., Chen, J.M., Chen, J., Gough, C.M., Martin, T.A., Dragoni, D., 2012. Evaluating
spatial and temporal patterns of MODIS GPP over the conterminous U.S. against flux
measurements and a process model. Remote Sens. Environ. 124, 717–729.

Zhang, Q., Cheng, Y.-B., Lyapustin, A.I., Wang, Y., Xiao, X., Suyker, A., Verma, S., Tan, B.,
Middleton, E.M., 2014a. Estimation of crop gross primary production (GPP): I. Impact
of MODIS observation footprint and impact of vegetation BRDF characteristics. Agric.
For. Meteorol. 191, 51–63.

Zhang, Y., Guanter, L., Berry, J.A., Joiner, J., van der Tol, C., Huete, A., Gitelson, A.,
Voigt, M., Khler, P., 2014b. Estimation of vegetation photosynthetic capacity from
space-based measurements of chlorophyll fluorescence for terrestrial biosphere
models. Glob. Chang. Biol. 20 (12), 3727–3742.

Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., Dong, J., 2017. A global moderate
resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data
4, 170165.

Zhang, Y., Xiao, X., Wolf, S., Wu, J., Wu, X., Gioli, B., Wohlfahrt, G., Cescatti, A., van der
Tol, C., Zhou, S., Gough, C.M., Gentine, P., Zhang, Y., Steinbrecher, R., Ardö, J., Apr
2018. Spatio-temporal convergence of maximum daily light-use efficiency based on
radiation absorption by canopy chlorophyll. Geophys. Res. Lett. 45 (8), 3508–3519.

A. Wolanin, et al. Remote Sensing of Environment 225 (2019) 441–457

457

http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0285
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0070
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0070
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0070
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0290
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0290
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0290
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0290
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0295
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0295
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0300
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0300
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0300
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0305
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0305
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0305
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0305
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0310
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0310
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0310
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0315
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0315
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0315
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0320
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0320
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0320
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0325
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0325
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0325
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0330
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0330
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0330
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0335
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0335
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0335
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0340
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0340
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0340
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0345
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0345
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0345
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0350
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0350
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0350
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0355
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0355
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0355
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0360
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0360
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0365
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0365
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0365
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0370
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0370
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0370
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0375
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0375
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0375
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0375
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0375
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0375
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0375
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0375
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0380
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0380
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0380
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0385
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0385
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0385
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0390
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0390
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0390
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0390
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0390
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0395
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0395
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0395
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0400
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0400
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0400
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0400
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0405
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0405
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0405
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0405
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0410
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0410
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0410
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0415
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0415
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0415
http://refhub.elsevier.com/S0034-4257(19)30093-8/rf0415

	Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations
	Introduction
	Materials and methods
	The SCOPE model
	Sentinel-2 data
	Landsat 8 data
	Meteorological data
	Flux tower sites
	GPP estimated with vegetation indices
	Global sensitivity analysis
	Machine learning models
	Modeling set-up

	Results and discussion
	Predictor variables of GPP
	Relationships between APAR and GPP
	Training of vegetation parameters and GPP models
	Application to Sentinel-2
	Application to Landsat 8

	Conclusions and future work
	Acknowledgements
	Appendix A
	RF

	References




