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A B S T R A C T

The identification of grapevine (Vitis vinifera L.) genotypes is conventionally a laborious activity that must be
carried out by specialized staff. In this work a novel and simple method for differentiation of grapevine geno-
types is presented. Direct measurements of leaves by attenuated total reflectance Fourier-transform infrared
spectroscopy (ATR-FTIR) combined with chemometric methods were used for classification of six genotypes (five
varieties and a pair of clones), viz. Cinsault, Gewurztraminer (clone 643), Moscatel de Alejandría, País, Pinot
Noir (French clone 777), Pinot Noir (local clone ‘Valdivieso’). These were successfully classified and identified
through supervised pattern recognition methods such as soft independent modeling of class analogy (SIMCA)
and partial least square discriminant analysis (PLS-DA). The error rate for spectra classification of test sets by
both models was 0.08. The results demonstrate the advantages of using ATR-FTIR as a rapid and non-destructive
tool that achieves accurate grapevine genotype differentiation.

1. Introduction

Monitoring quality throughout the winemaking process (from soil to
bottle) has great importance from both the viticulture and the en-
ological point of view. Nowadays, methods for the identification of
grapevine (Vitis vinifera L.) genotypes are visual ampelography (Galet,
1979) and DNA analysis (Borrego, De Andrés, Gómez, & Ibáñez, 2002).
Nevertheless, these methods are time-consuming and involve labor-in-
tensive intervention of experts. In this work, a novel screening method
based on attenuated total reflectance (ATR) and Fourier transform in-
frared spectroscopy (FTIR) combined with advanced statistics for
grapevine genotypes differentiation is presented. Advantages of ATR-
FTIR are rapid data acquisition, user-friendliness, its relatively low cost
and the fact that it is nondestructive. The vibrational spectrum is a
molecular fingerprint for any type of biological/botanical samples (da
Luz, 2006; Milosevic, 2004; Schmidtke, Smith, Müller, & Holzapfel,
2012; Shah, Cynkar, Smith, & Cozzolino, 2010).

In ATR-FTIR the IR spectrum is obtained from the surface of the
sample. The sample is placed in contact with an internal reflection
material (in this case Ge crystal) with a high refractive index, allowing
total reflection of incident light multiple times. The surface of the
sample interacts with the evanescent wave resulting in the absorption

of radiation at each point of reflection (da Luz, 2006; Milosevic, 2004;
Schmidtke et al., 2012).

Different studies in viticulture have used a number of analytical
techniques such as gas chromatography-mass spectrometry (GC–MS),
high performance liquid chromatography (HPLC), atomic absorption/
emission spectrometry (AAS, AES), inductively coupled plasma optical
emission spectrometry (ICP-OES), X-ray and voltammetry (Carrascon,
Ontañón, Bueno, & Ferreira, 2017; Dalipi, Marguí, Borgese, Bilo, &
Depero, 2016; Eftekhari et al., 2017; Kilmartin, 2016; Mierczynska-
Vasilev & Smith, 2016; Mollo, Sixto, Falchi, Medina, & Knochen, 2017;
Mutic et al., 2011; Ozbek & Akman, 2015; Shi et al., 2014). Vibrational
spectroscopy has played a special role in viticulture, allowing to follow
all the winemaking process analytically. Several studies have been fo-
cused on the evaluation of berry growing and maturation, monitoring
wine fermentation, measuring quality parameters and sensory attri-
butes, and even determining wine’s geographic origin (Cozzolino,
Cynkar, Dambergs, Shah, & Smith, 2013; Dambergs, Gishen, &
Cozzolino, 2015; De Bei et al., 2011; Levasseur-garcia, Malaurie, &
Mailhac, 2016; Martin et al., 2015; Nogales-Bueno et al., 2017; dos
Santos, Claudia, Páscoa, Lopes, & Lopes, 2017; dos Santos et al., 2017;
Tian et al., 2017). In addition, spectroscopic data is processed using
chemometric methods that provide mathematical tools for processing
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large amounts of information and reveal correlations between spec-
troscopic patterns between samples. Classification methods such as soft
independent modeling of class analogy (SIMCA) and partial least square
discriminant analysis (PLS-DA) can be applied for sample identification.
Classification and calibration models are developed and evaluated by
appropriated validation methods (Otto, 2016).

The aim of this work is to differentiate and classify grapevine gen-
otypes applying simple and direct screening techniques based on ATR-
FTIR spectroscopy. These can be used as an alternative method to
conventional genetic analysis used for variety identification, currently
based on Simple Sequence Repeats (SSR) markers (This et al., 2004).
This work is a proof of concept that demonstrates the tremendous po-
tential of vibrational spectroscopy for direct and in-field classification
technique of grapevine cultivars.

2. Materials and methods

2.1. Grapevine (Vitis vinifera L.) genotypes

The Región de Bío-Bío in Central-South Chile is a traditional wine
production area where a number of wine grape varieties are used in
small wineries. Therefore, there is a need for genotypes identity ver-
ification for these small wine producers in isolated regions, where
conventional methods are scarcely accessible or not available at all.

Six grapevine genotypes (varieties and clones), among the most
commonly planted in this region, were considered for this study. Adult
plants were healthy, free of fungal diseases and of regular vigor. All
samples were collected from the same vineyard of around 100 ha,
where all grapevine genotypes are cultivated (36° 36′29.4″ S, 72°
39′42.1″ W, Altos de Guarilihue, Región de Bío-Bío, Chile) in December
2015. The genotypes analyzed were: Cinsault, Gewurztraminer (clone
643), Moscatel de Alejandría, País and Pinot Noir (French clone 777
and the local clone ‘Valdivieso’). From these, Moscatel de Alejandría
and País are patrimonial varieties with more than 300 years of local
presence (Cantillana, 2017; Lacoste, Soto, & Pszczolkowski, 2015; Milla
Tapia et al., 2007); Pinot Noir and Gewurztraminer were imported from
France before the peak of the phylloxera crisis (second half of XIXth

century), and Cinsault was introduced in the beginning of the XXth

century (Cantillana, 2017).
Leaf samples were collected directly from 20 to 30 plants of each

genotype, stored in plastic bags and then transported to the lab in re-
frigerated containers in the same day. Each leaf was cleaned with tissue
paper (Kimberly-Clark Worldwide, Inc., Neenah, WI, USA) before the
spectroscopic analysis to remove dirt.

Representative leaf samples of each variety and clone were sepa-
rated in order to extract DNA for varietal verification using SSR mar-
kers, as has been described in the literature (Narváez, Castro,
Valenzuela, & Hinrichsen, 2001). The result of these analyses is sum-
marized in Table S1; the allelic patterns of each sample perfectly fitted
Instituto de Investigaciones Agropecuarias (INIA) and Vitis Interna-
tional Variety Catalogue (VIVC) databases for each variety considered
in this study.

2.2. Instrumentation

Sample spectra were record using a Ge crystal ATR sampling ac-
cessory mounted in a Nicolet iS10 FT-IR spectrometer (Thermo Fisher
Scientific, Madison, WI, USA). The spectrum of each sample was col-
lected in the range of 4000 to 690 cm−1 with 25 scans at 8 cm−1 re-
solution and measured after one reflection between the crystal and the
sample. The spectrum of air (background) was collected before analyses
of each sample. The spectral collection was operated using Omnic
Specta software suite version 7.3 (Thermo Fisher Scientific, Madison,
WI, USA).

2.3. Spectra pre-treatment

The spectra were saved as data files in .CSV format. First, the region
at 2400–2280 cm−1 corresponding to absorption band of atmospheric
CO2 was removed from data. Later, standard normal variate (SNV), first
derivative and smoothing were tested as transformation techniques.
SNV was used to remove multiplicative interferences of scatter in the
spectral signal. First derivative and smoothing (Savitzky-Golay poly-
nomial filter 25 points per window) were applied for minimizing
baseline deviation and spectral noise, respectively (Gemperline, 2006;
Otto, 2016; Zeaiter, Roger, & Bellon-Maurel, 2005). Finally, spectra
were preprocessed by mean centering (MC) before calibration and
classification.

2.4. Data sets

The abbreviations CT, GW, MA, PA, PN and PNV correspond to
Cinsault, Gewurztraminer (clone 643), Moscatel de Alejandría, País,
Pinot Noir (French clone 777) and Pinot Noir (local clone ‘Valdivieso’),
respectively. A total of 174 grapevine leaf samples of CT (29), GW (27),
MA (30), PA (28), PN (30), PNV (30) were analyzed. Spectral data were
divided by random selection in two sets (80:20): training set (138
samples) for obtaining the classification models and test set (36 sam-
ples) for external validation purpose. Each sample was measured twice
and average spectra were considered for further analysis.

2.5. Chemometric analysis

For classification models, SIMCA and PLS-DA algorithms were uti-
lized. Full spectra (4000 to 690 cm−1) were considered for the models'
development. Both models were applied over the training set. The de-
signed classification was assessed by leave one out (LOO) cross-vali-
dation to select the optimal number of factors (Otto, 2016; Voet &
Coenegracht, 1987).

The models were evaluated and compared using different para-
meters viz. error rate (ER) which is a measure of the number (percen-
tage) of incorrectly classified samples; sensitivity (Sn) describes the
model ability to correctly recognize objects belonging to the gth class;
specificity (Sp) characterizes the capability of the gth class to reject
objects of all other classes; and the precision (Pre) measures the ability
of a classification model to exclude objects of other classes in the
considered class (Wehrens, 2011). All these parameters were calculated
on the training and test sets of samples. Root mean square error of
calibration (RMSEC) and cross-validation (RMSECV) were reported for
PLS-DA model. Chemometric analysis was performed by Pirouette 4.5
software (Infometrix Inc., Woodinville, WA, USA).

3. Results and discussion

3.1. ATR-FTIR and genetic analysis

Grapevine leaves are complex samples which include assemblages
of organic compounds. The infrared-absorption bands can be attributed
to biological polymeric and condensed compounds, such as pectin,
lignin, polysaccharides, lipids, terpenoids and flavonoids (da Luz, 2006;
Heredia-Guerrero et al., 2014; Nogales-Bueno et al., 2017). Fig. 1 shows
the average spectra for the six classes of grapevine genotypes belonging
to the training set. Previous studies determined the spectral zones; the
main functional groups presented for these genotypes samples are de-
scribed in Table 1. It is remarkable that this approach was able to dif-
ferentiate the two clones of Pinot noir (clon 777 and clone Valdivieso),
which is, up to now, not possible to afford by means of microsatellite/
SSR or other available molecular analyses, with very specific exceptions
(Moncada, Pelsy, Merdinoglu, & Hinrichsen, 2006; Pelsy et al., 2010).
Even using whole genome sequencing for clones of particular varieties,
differentiation of grapevine clones has been quite elusive (Vondras
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et al., 2019). The evaluation of larger sets of clones belonging to dif-
ferent varieties would be an evident target for future applications of this
IR platform.

3.2. Supervised analysis

SIMCA and PLS-DA supervised classification methods were chosen
for building differentiation models based on training datasets, which
were obtained from spectral data of grapevine leaves. The classification
models were externally validated to achieve prediction success (correct
class assignment) using test data, which were omitted during the
training process. Table S2 details the parameters optimized for the best
classification performance of the models.

After testing different spectral transformations, SNV and first

derivative/smooth showed the best results for pretreatment of ATR-
FTIR raw data. Along with the application of the SIMCA model, both
transformed techniques showed a successful classification. SNV was
selected because higher interclass distance values were obtained (Table
S3) in spite of a slightly greater number of components being required.
Higher interclass distance is important to produce reliable predictions.
Interclass distances show how far the two classes are separated, which
is calculated as the geometric distance between individual clusters for a
chosen confidence interval (95% in this case).

SIMCA requires the development of individual principal component
(PC) based on models for each class. The number of PCs selected in each
PCA model was optimized using the cross-validation procedure. Eight
PCs were selected for SIMCA classification. The cumulative variance for
each class were CT (99.3%), GW (99.6%), MA (99.5%), PA (99.1%), PN
(99.3%) and PNV (99.6%). Fig. 2 shows the discriminating ability of the
variables for the set of grapevine genotypes. The discrimination power
plot shows which wavenumbers mostly contribute to the separation of
grapevine genotypes. The higher the value, the more influential the
wavenumber is in the discrimination between class (Infometrix, 2011).
It can be seen that variables corresponding at bands CeH stretching
(va2956 and vs2873 cm−1) and CeH deformation (1400 cm−1) provide
high discriminating power; these regions can be related with compo-
nent of polysaccharides, lignins and pectins. Likewise, C]O stretching
at ~1748 cm−1 was important to discriminate. Around ~1696 cm−1

were noted the influence of the bands COO− asymmetric stretching and
C]C stretching associate at pectins and phenolics. Finally, absorptions
of CeOeC glycosidic at 1113 cm−1 showed also significant dis-
criminating power.

Classification methods as SIMCA and PLS-DA not only determine
whether a sample belongs to one of the chosen classes but can also
indicate if it does not belong to any of them (Gemperline, 2006). The

Fig. 1. ATR-FTIR average spectra for each grapevine (Vitis vinifera L.) genotypes.

Table 1
Peak assignment for the ATR-FTIR spectra shown in Fig. 1.

Assignment Absorption bands
(cm−1)

Component related

v(OeH) 3400 Polysaccharides, lignins
va, vs (CH2) 2916, 2850 Lignins, lipids, terpenoids
v(C]O) 1734 Polyesters, pectins, lignins
va(COO−) and v

(C]C)aromatic

1640 Pectins, phenolics

δa(CH2) 1472,1463 Lipids
v(CeO), δ(OeH) 1245 Polysaccharides, pectins,

lignins
v(CeOeC) 1170 Polysaccharides, pectins
v(CeO) and v(CeC) 1100–1023 Polysaccharides, pectins
δ (CeH)out of plane 960, 730 Phenolics
δ (CH2)rocking 720 Phenolics

Assignment: v (stretching), δ (bending); s (symmetric), a (asymmetric)
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classification results are shown in a confusion matrix. The confusion
matrix indicates two possible outcomes including (i) the sample was
classified into some of the six classes (CT, GW, MA, PA, PN and PNV) or
(ii) the sample was not assigned to any class. The results of SIMCA
classification by internal and external validation are shown in Table 2a.
For LOO cross validation all training sets were correctly assigned with
100% precision, sensitivity and specificity. Whereas the error rates for
CT and PA were 0.17 and 0.33, respectively. The values of sensitivity
for CT (Sn: 83%), PA (Sn: 67%) and precision for GW (Pre: 86%), PN
(Pre: 86%), PNV (Pre: 86%) were acceptable (Table 3). Fig. 3a illus-
trates the SIMCA classification for external validation of the unknown
grapevine genotypes testing set. Y-axis values correspond to predicted
“grapevine genotype”. A value of 1, 2, 3, 4, 5 and 6 indicates that a
sample belongs to CT, GW, MA, PA, PN, and PNV respectively. While 0
corresponds to “unmatched” samples. It can be noticed that only few CT
and PA testing samples were wrongly assigned.

When PLS-DA model was applied, first derivative/smoothing were

Fig. 2. Discriminating power in the SIMCA model built.

Table 2
SIMCA and (b) PLS-DA confusion matrix for the grapevine (Vitis vinifera L.)
genotypes.

(a) SIMCA model Error rate Predicted class

CT GW MA PA PN PNV No match

Real class CT Training (0) 23
Test (0.17) 5 1

GW Training (0) 21
Test (0) 6

MA Training (0) 24
Test (0) 6

PA Training (0) 22
Test (0.33) 1 4 1

PN Training (0) 24
Test (0) 6

PNV Training (0) 24
Test (0) 6

(b) PLS-DA model Error rate Predicted class

CT GW MA PA PN PNV No match

Real class CT Training
(0.09)

21 2

Test (0.33) 4 2
GW Training

(0.24)
16 1 4

Test (0) 6
MA Training

(0.12)
1 21 2

Test (0) 6
PA Training

(0.33)
17 1 4

Test (0) 6
PN Training

(0.17)
20 4

Test (0.17) 5 1
PNV Training (0) 24

Test (0) 6

Table 3
The quality of the built models evaluated in terms of the prediction sensitivity
(Sn, %), specificity (Sp, %) and precision (Pre, %).

SIMCA model PLS-DA model

Sn Sp Pre Sn Sp Pre

CT Training 100 100 100 100 100 100
Test 83 100 100 100 100 100

GW Training 100 100 100 94 99 94
Test 100 96 86 100 100 100

MA Training 100 100 100 96 100 100
Test 100 100 100 100 100 100

PA Training 100 100 100 94 100 100
Test 67 100 100 100 100 100

PN Training 100 100 100 100 99 95
Test 100 96 86 100 100 100

PNV Training 100 100 100 100 99 96
Test 100 96 86 100 100 100
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Fig. 3. (a) SIMCA and (b) PLS-DA classification plot for external validation from the unknown grapevine genotypes (testing set).

Á. Álvarez, et al. Food Chemistry 328 (2020) 127164

5



selected as preprocessing technique since they showed the best pre-
diction rate. The latent variables used and the cumulative variance
obtained for each class are shown in Table S2. Regression vectors ob-
tained from PLS-DA analysis of the six grapevine genotypes are shown
in Fig. S1. It can be noted that for Gewurztraminer and País the CeH
stretching at 3000–2800 cm−1 were relevant bands for classification
purposes. These are related with components of polysaccharides, lig-
nins and pectins. Also C]O stretching at ~1747 cm−1 was observed in
CT and MA spectra. In particular, the band at ~1637 cm−1 belonging
COO− asymmetric stretching and C]C stretching was present in CT
and can be assigned to pectins and phenolics components. Specifically,
a band at ~1463 cm−1 corresponding at CeH deformation was sig-
nificant for GW and PA. All classes excepting PNV showed high con-
tribution by the region at 1100–1000 cm−1 associated to the absorption
of the CeO stretching from polysaccharides and pectins. For all classes,
the influence of the bands at ~820–700 cm−1, corresponding to CeH
out of plane deformation and rocking, was noted.

Table 3 shows the results of PLS-DA classification for training and
test set. The error rate was 0.14 for the training set. The values of
sensitivity for GW (Sn: 94%), MA (Sn: 96%), PA (Sn: 94%) and preci-
sion for GW (Pre: 94%), PN (Pre: 95%), PNV (Pre: 96%) were accep-
table (Table 3). Additionally, Table S5 summarizes the figure of merit of
PLS-DA classification model for the grapevine genotypes. It is reported
according to the number of components in each brand. The error rates
for the test set for CT and PN were 0.33 and 0.17, respectively. The
statistics (precision, sensitivity and specificity) for test set from the six
classes are shown in Table 2b. Besides, Fig. 3b shows the PLS-DA
classification for external validation from the unknown grapevine
genotypes testing set. It can be seen that only CT and PN samples were
unmatched.

Both PLS and SIMCA are well established and easily manageable
methods. When compared, the PLS-DA algorithm yields better classifi-
cation rates than SIMCA. Nevertheless, the interpretation of PLS-DA
tends to be more complicated when the number of classes rises. In this
work, both methods showed acceptable classification rates for classes
belonging to the calibration set. However, SIMCA showed better results
regarding the prediction rate of the training set in cross validation. In
this sense, a crucial comparison point is the ability of the models to
obtain good results for the training set. Taking this feature into account,
the SIMCA model could be considered as the best option for the clas-
sification of our samples, nevertheless, the capacity of classification of
both models should be reassessed when new samples and genotypes of
different vineyards are included in future works.

In comparison with our results, other studies of grapevine classifi-
cation by vibrational spectroscopy have been reported. NIR hyper-
spectral image of three grapevine varieties (Tempranillo, Grenache and
Cabernet Sauvignon) coupled with PLS analysis were evaluated.
Similarly to our results, the model proposed reached a 92% satisfactory
classification (Diago, Fernandes, Millan, Tardaguila, & Melo-pinto,
2013). Furthermore, when classification of four clones of Cabernet
Sauvignon was studied by NIR hyperspectral image and PLS analysis, a
correct prediction rate of 97.8% was achieved (Fernandes, Melo-Pinto,
Millan, Tardaguila, & Diago, 2014). The results reported in this work
using ATR-FTIR show the predictive ability in order to get fast, reliable
and accurate classification of new samples. The proposed methodology
requires to increase the number of Vitis spp. genotypes (possibly ap-
plicable in rootstock hybrids identification) in order to attest the ver-
satility and predictive ability of this technique. Besides, further studies
could be conducted exploring additional prediction methods. Artificial
Neural Networks (ANNs), Support Vector Machine (SVM), and Random
Forest (RF) are computational methods widely used for food authenti-
cation (Esteki, Regueiro, & Simal-Gándara, 2019; Esteki, Shahsavari, &
Simal-Gandara, 2018, 2020, 2019; Gao et al., 2019; Gonzalez-
Fernandez et al., 2019), and winemaking (Astray et al., 2019; Moldes,
Mejuto, Rial-Otero, & Simal-Gandara, 2017; Wu et al., 2019). Future
opportunities must include the assessment of food quality, safety,

geographical origin and authenticity (e.g. grapes and wines). In fact,
blockchain for food traceability analysis is being used for tracking and
authenticating the food supply chain (Galvez, Mejuto, & Simal-
Gandara, 2018).

4. Conclusions

The ability of ATR-FTIR spectroscopy coupled with chemometric
analysis was successfully evaluated as a simple and fast screening
method for the differentiation and identification of grapevine geno-
types. The analysis was developed and validated with leaves of six
genotypes. Differentiation and classification of these genotypes was
achieved by using both SIMCA and PLS-DA models. All spectra were
classified correctly during the LOO-cross validation applying SIMCA,
while the error rate for PLS-DA model was 0.14. Parameters such as
sensitivity, specificity and precision were evaluated. The ability of the
models was tested by correct assignment of external data. The classi-
fication error rates for the external validation of SIMCA and PLS-DA
models built were the same (0.08).

The main advantage of the proposed method is its ability to provide
rapid and non-destructive analysis. In particular, its environmental
friendliness should be highlighted, as it provides an alternative to other
analytical platforms for grapevine varietal identification, such as the
classical ampelography or the nowadays most popular SSR-based mo-
lecular screening. It is worth to mention that a larger number of
grapevine genotypes must be included through more experimentation
before proposing spectral-based methodologies as the recommended
method for grapevine fingerprinting. Additionally, the reproducibility
of the IR-based methods presented here must be evaluated on leaf
samples of the same genotype (variety, clone) obtained from different
environments and with different managements and trellis systems as
well as on samples having different physiological conditions, sanitary
conditions and developmental stages, in order to fully establish its
confidence, technical strengths and weaknesses.
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