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“And as we wind on down the road

Our shadows taller than our soul

There walks a lady we all know

Who shines white light and wants to show

How everything still turns to gold

And if you listen very hard

The tune will come to you, at last

When all are one and one is all, yeah

To be a rock and not to roll

And she’s buying a stairway to heaven.”

Stairway to heaven - by Heart.



Resumo

Neste trabalho, estudamos resultados de convergência dos métodos clássicos do gradiente

e do subgradiente, além de uma variação do método subgradiente com busca linear não

monótona para funções convexas Lipschitz. O método do gradiente é um método de de-

scida e os tamanhos de passo são escolhidos de forma exata e inexata com busca linear.

O método subgradiente não é necessariamente um método de descida e os tamanhos de

passo estudados são pré-fixados, não sendo escolhidos via busca linear. Assim, também

estudamos um método subgradiente com busca linear não monótona que, apesar de não

ser um método de descida, o posśıvel aumento nos valores da função é controlado e os

tamanhos de passo são escolhidos de forma adaptativa.

Palavras-chave: Método do gradiente, método do subgradiente, método do subgradiente

não-monótono, função convexa.
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Abstract

In this work, we study convergence results of the classical gradient and subgradient meth-

ods, as well as a variation of the subgradient method with non-monotone line search for

convex Lipschitz functions. The gradient method is a descent method and step sizes are

chosen exactly and inexactly with line search. The subgradient method is not necessar-

ily a descent method and the step sizes studied are pre-fixed and are not chosen via line

search. Thus, we also studied a subgradient method with non-monotone line search which,

despite not being a descent method, the possible increase in function values is controlled

and step sizes are chosen adaptively.

Keywords: Gradient method, subgradient method, non-monotone subgradient method,

convex function.
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Introduction

In this work, we study the subgradient method with non-monotone line search for Lipschitz

convex functions proposed in [8]. The method performs a line search similar to the

Armijo line search commonly used in the differentiable context. Additionally, we provide

a brief study of classical gradient and subgradient methods along with their respective

characteristics.

The gradient method, also known as the Cauchy method, is one of the oldest and most

well-known strategies for minimizing a multivariable function. Its theoretical simplicity

makes it particularly applicable to high-dimensional problems. However, computationally,

the gradient method can exhibit a “zig-zag” behavior, resulting in slower convergence.

Nevertheless, it serves as a fundamental basis for the development and refinement of more

efficient methods.

The gradient method in each iteration moves in the direction opposite to the gradient

vector, with a certain step size to ensure the descent algorithm. The proper choice of step

size plays a crucial role in the method’s effectiveness. Common approaches include the

fixed step size, the one-dimensional minimization rule (exact line search), and the Armijo

rule (inexact line search). Here are some basic references on the gradient method and its

convergence properties: [2, 3, 11, 15, 17, 18].

The subgradient method for solving nondifferentiable convex optimization problems

was developed in the 1960s, as evidenced by [7, 21]. In each iteration, a step is taken in

the direction opposite to a subgradient. It is not necessarily a descent method because

the direction opposite to a subgradient may not be a descent direction.

In the classical case, the sequence of step sizes is predetermined before the algorithm

starts, and the step sizes are not chosen via line search. Five typical choices are considered,

where the sequence of step sizes is either constant or tends to zero at a sublinear rate: con-

stant step size, constant step length, square summable but not summable, nonsummable
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diminishing, and nonsummable diminishing step lengths. Here are some fundamental

references on the subgradient method and its convergence properties: [2, 11, 16, 19, 21].

The subgradient method proposed in [8] for minimizing Lipschitz convex functions

includes a line search performed in the direction opposite to a subgradient. This search

allows the function to increase over iterations, but the increase is controlled by a sequence

(of nonmonotonicity) of nonincreasing parameters. The method utilizes this nonmonotone

search to determine the step size, implying that this variant of the subgradient method

has adaptive step sizes. Furthermore, since the search depends on the nonmonotonicity

sequence, the step size is implicitly controlled by it.

This work is structured as follows: In Chapter 1, we present some notations, defini-

tions, and results from optimization theory that will be used throughout the work. In

Chapter 2, we study descent methods and some common line search techniques in the dif-

ferentiable case. We introduce the gradient method and convergence results under certain

assumptions on the function , its gradient, and choices of search rules. In Chapter 3, we

highlight the differences that arise in the study of convex optimization when moving from

the differentiable to the nondifferentiable context. We present the subgradient method,

step size rules, classical inequalities, and convergence results. In Chapter 4, we introduce

the algorithm ”subgrad projection method with non-monotone line search”, study some

inequalities, and present convergence results of the method under assumptions on the

nonmonotonicity sequence.



Chapter 1

Preliminaries

In this chapter, we present some notations, definitions, and results in optimization theory

that will be used throughout the work, which can be found in [1, 5, 10, 11, 22].

Let D ⊂ Rn and Ω ⊂ Rn such that D ⊂ Ω, and let f : Ω → R be a function. Consider

the problem of minimizing f over the set D, that is,

min f(x)

s.t. x ∈ D.

(1.1)

The set D is referred to as the feasible set of the problem, the points in D are called

feasible points, and f is referred to as the objective function.

Definition 1.0.1. We say that a point x̄ ∈ D is

1. a global minimizer of (1.1) if

f(x̄) ≤ f(x), ∀x ∈ D;

2. a local minimizer of (1.1) if there exists a neighborhood U of x̄ such that

f(x̄) ≤ f(x), ∀x ∈ D ∩ U.

Proposition 1.0.1. Suppose the function f : Rn → R is differentiable at the point x̄. If

x̄ is an unconstrained local minimizer of f , then

∇f(x̄) = 0.

Definition 1.0.2. A function f : Rn → R is Lf,C-Lipschitz continuous on C ⊂ Rn if there

exist a constant Lf,C > 0 such that |f(x)−f(y)| ≤ Lf,C∥x−y∥, for all x, y ∈ C. Whenever

C = Rn we set Lf ≡ Lf,Rn.

3
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Proposition 1.0.2. Let f : Rn → R be a differentiable function on Rn, with Lipschitz

continuous gradient in Rn with constant L > 0. Then,

|f(x+ y)− f(x)− ⟨∇f(x), y⟩| ≤ L

2
∥y∥2, ∀x, y ∈ Rn.

Definition 1.0.3. A set A ⊂ Rn is said to be convex if, for every x, y ∈ A we have

λx+ (1− λ)y ∈ A, ∀λ ∈ [0, 1].

Proposition 1.0.3. Let f : Rn → R be a continuously differentiable function on a convex

and open set Ω ⊂ Rn. Then, for every x, y ∈ Ω there exists t ∈ [0, 1] such that

f(y)− f(x) = ⟨∇f(tx+ (1− t)y), y − x⟩.

Definition 1.0.4. A function f : A ⊂ Rn → R is said to be convex if A is convex and

for every x, y ∈ A, the inequality holds:

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, 1].

Proposition 1.0.4. Let Ω ⊂ Rn be a convex and open set, and f : Ω → R a differentiable

function on Ω. If f is convex on Ω, then for every x, y ∈ Ω, we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩.

Definition 1.0.5. Let f : Rn → R be a convex function. We say that y ∈ Rn is a

subgradient of f at the point x ∈ Rn if

f(z) ≥ f(x) + ⟨y, z − x⟩, ∀z ∈ Rn.

The set of all subgradients of f at x is called the subdifferential of f at x denoted by ∂f(x).

Proposition 1.0.5. Let f : Rn → R be a convex function. Then for every x ∈ Rn, the

set ∂f(x) is convex, compact, and non-empty. Moreover, for every d ∈ Rn, we have

f ′(x; d) = max{⟨y, d⟩ | y ∈ ∂f(x)}.

Proposition 1.0.6. A convex function f : Rn → R is differentiable at the point x ∈ Rn

if and only if the set ∂f(x) contains exactly one element. In this case, ∂f(x) = {∇f(x)}.

Definition 1.0.6. Let D ⊂ Rn be a convex set and x̄ ∈ D. The normal cone at the point

x̄ with respect to the set D is defined as

ND(x̄) = {d ∈ Rn | ⟨d, x− x̄⟩ ≤ 0, ∀x ∈ D}.
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Proposition 1.0.7. Let f : Rn → R be a convex function and D ⊂ Rn a convex set.

Then x̄ ∈ Rn is a minimizer of f on D if and only if

∃ y ∈ ∂f(x̄) such that ⟨y, x− x̄⟩ ≥ 0, ∀x ∈ D,

or equivalently,

0 ∈ ∂f(x̄) +ND(x̄).

In particular, x̄ is a minimizer of f in Rn if and only if

0 ∈ ∂f(x̄).

Proposition 1.0.8. Let f : Rn → R be a convex function. Then the set where the

function f is not differentiable has Lebesgue measure zero.

Definition 1.0.7. A function f : Rn → R is said to be σ-strongly convex with modulus

σ ≥ 0 if f(τx + (1 − τ)y) ≤ τf(x) + (1 − τ)f(y) − σ
2
τ(1 − τ)∥x − y∥2, for all x, y ∈ Rn

and τ ∈ [0, 1].

Proposition 1.0.9. The function f : Rn → R is σ-strongly convex with modulus σ ≥ 0 if

and only if f(y) ≥ f(x) + ⟨v, y− x⟩+ (σ/2)∥y − x∥2, for all x, y ∈ Rn and all v ∈ ∂f(x).

Proposition 1.0.10. Let f : Rn → R be a convex. Then, for all x ∈ Rn the set ∂f(x) is

a non-empty, convex, compact subset of Rn. In addition, f is Lf,C-Lipschitz function on

C ⊂ Rn if and only if ∥v∥ ≤ Lf,C for all v ∈ ∂f(x) and x ∈ C.

Definition 1.0.8. Let C ⊂ Rn be a non-empty, closed and convex set. The projection

map, denoted by PC : Rn ⇒ C, is defined as follows PC(y) := argmin{∥y − z∥ : z ∈ C}.

Proposition 1.0.11. Let D ⊂ Rn be a non-empty, convex and closed set. Then for every

x ∈ Rn, the projection of x onto D, PD(x), exists and is unique.

Furthermore, x̄ = PD(x) if and only if

x̄ ∈ D, ⟨x− x̄, y − x̄⟩ ≤ 0, ∀y ∈ D,

or equivalently,

x̄ ∈ D, x− x̄ ∈ ND(x̄).
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Proposition 1.0.12. Le D ⊂ Rn be a non-empty, convex and closed set. Then, for any

x ∈ Rn and y ∈ Rn, we have

⟨PD(x)− PD(y), x− y⟩ ≥ ||PD(x)− PD(y)||2 ≥ 0,

and

||PD(x)− PD(y)|| ≤ ||x− y||.

In particular, PD(·) is continuous on Rn.

Proposition 1.0.13. Let y ∈ Rn and z ∈ C. Then, we have ∥PC(y)− z∥2 ≤ ∥y − z∥2.

Definition 1.0.9. Let S be a nonempty subset of Rn. A sequence (vk)k∈N ⊂ Rn is said

to be quasi-Fejér convergent to S, if and only if, for all v ∈ S there exists k̄ ≥ 0 and a

summable sequence (ϵk)k∈N, such that ∥vk+1 − v∥2 ≤ ∥vk − v∥2 + ϵk for all k ≥ k̄.

Proposition 1.0.14. Let (vk)k∈N be quasi-Fejér convergent to S. Then, the following

conditions hold:

(i) the sequence (vk)k∈N is bounded;

(ii) if a cluster point v̄ of (vk)k∈N belongs to S, then (vk)k∈N converges to v̄.



Chapter 2

Gradient method

The chapter will be divided into two sections. In the first section, we will present the

idea of descent methods and line search techniques, which are natural in the differentiable

case. The main results are the descent lemma and the rules for line search. We will use

the descent lemma as a criterion for choosing a descent direction and the rules for line

search as a criterion for choosing the step size. In the second section, we will present

the gradient method, which is a descent method and in each iteration performs a search

in the direction opposite to the gradient vector. The main results are the convergence

theorems, under certain assumptions on the function f , its gradient f and the choice of

search rules.

The functions considered are once or twice differentiable.

The construction of the first and second sections were based on references [2], [3], [11],

[15], [17], [18], [20].

2.1 Descent methods. Line search.

Consider a function f : Rn → R and the unconstrained minization problem

min f(x)

s.t. x ∈ Rn.

(2.1)

An idea to solve this problem is as follows: Starting from a point xk ∈ Rn, we want

to find a new point xk+1 ∈ Rn such that

f(xk+1) < f(xk).

7
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This new point can be obtained, from the point xk, taking a direction dk ∈ Rn ac-

cording to which f decreases, at least for steps sufficiently small, and choosing a step size

tk > 0 such that

f(xk + tkd
k) < f(xk).

Thus, we take xk+1 := xk + tkd
k and repeat the procedure for the new point obtained.

In this way, we construct a sequence {xk} with the property that f(xk+1) < f(xk), for

each k = 0, 1, 2, .... Methods that use this idea are called descent methods.

In the idea about how to obtain the point xk+1 there are no instructions on how to

choose a descent direction dk and a step size tk. In general, there are several possible

descent directions and step size to take.

Definition 2.1.1. We say that d ∈ Rn is a descent direction of the function f : Rn → R

at the point x ∈ Rn if there exists ε > 0 such that

f(x+ td) < f(x) ∀t ∈ (0, ε].

We denote by Df (x) the set of all descent directions of the function f at the point x.

Of course, Df (x) can be empty, for example, if x is a minimizer of the Problem (2.1);

and it is clear that Df (x) ∪ {0} is a cone, since if d ∈ Df (x), for all t > 0 we have that

td ∈ Df (x) and if t = 0 then td ∈ {0}.

From this definition, we mathematically formalize the meaning of d ∈ Rn being a

direction according to which f decreases, at least for sufficiently short steps. In other

words: to show, by definition, that d is a descent direction, we have to guarantee that

there exists ε > 0 such that for all values of t ∈ (0, ε], the inequality f(x + td) < f(x) is

true.

If we add the hypothesis that f is differentiable at the point x, then it is possible to

obtain a more practical characterization for deciding whether d is a descent direction of

f at the point x.

Lemma 2.1.1. Consider f : Rn → R a differentiable function at the point x ∈ Rn. Then:

a) For all d ∈ Df (x), we have ⟨∇f(x), d⟩ ≤ 0.

b) If d ∈ Rn satisfies ⟨∇f(x), d⟩ < 0 then d ∈ Df (x).



Chapter 2. Gradient method 9

Proof. Let d ∈ Df (x). Then there exists ε > 0 such that f(x+td) < f(x), for all t ∈ (0, ε].

Since f is differentiable at the point x, for all t > 0, f(x+ td) = f(x)+ ⟨∇f(x), td⟩+ o(t),

with limt→0+
o(t)
t

= 0. So,

0 > f(x+ td)− f(x) = t

(
⟨∇f(x), d⟩+ o(t)

t

)
, ∀t ∈ (0, ε].

Dividing both sides of the above inequality by t > 0 and taking the limit as t → 0+,

we obtain that 0 ≥ ⟨∇f(x), d⟩, which shows item (a).

Now suppose that ⟨∇f(x), d⟩ < 0. Again, since f is differentiable at the point x, for

t > 0, we have

f(x+ td)− f(x) = t

(
⟨∇f(x), d⟩+ o(t)

t

)
,

with limt→0+
o(t)
t

= 0. As limt→0+
o(t)
t

= 0 and 0 < −1
2
⟨∇f(x), d⟩, then there exists a δ

such that if t ∈ (0, δ) we have that

o(t)

t
≤ −1

2
⟨∇f(x), d⟩.

Thus,

⟨∇f(x), d⟩+ o(t)

t
≤ ⟨∇f(x), d⟩ − 1

2
⟨∇f(x), d⟩

=
1

2
⟨∇f(x), d⟩

< 0.

Therefore,

f(x+ td)− f(x) = t

(
⟨∇f(x), d⟩+ o(t)

t

)
≤ t

(
1

2
⟨∇f(x), d⟩

)
< 0, ∀ t ∈ (0, δ),

that is, d ∈ Df (x), which shows part (b).

In the differentiable context, the lemma above is a tool to choose d as a direction

of descent of f at the point x, for example, we can prove that, if ∇f(x) ̸= 0 , then

−∇f(x) ∈ Df (x). In fact, taking d = −∇f(x) we have that

⟨∇f(x), d⟩ = ⟨∇f(x),−∇f(x)⟩ = −∥∇f(x)∥2 < 0.
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Figure 2.1: Illustration of item b) of the Lemma 2.1.1.

The Lemma 2.1.1 shows that, for dk ∈ Rn to be a descent direction, it is sufficient that

⟨∇f(x), dk⟩ < 0, see Figure 2.1. Then let us consider the following descent algorithm to

solve the Problem (2.1).

Algorithm 1 Descent algorithm

1: Choose x0 ∈ Rn and set k := 0;

2: while ||∇f(xk)|| ≠ 0 do

3: Choose dk ∈ Rn such that ⟨∇f(xk), dk⟩ < 0;

4: Choose tk > 0 such that f(xk + tkd
k) < f(xk);

5: Set xk+1 := xk + tkd
k and update k := k + 1;

6: end while

Since ∇f(xk) ̸= 0, we have already seen that it is possible to perform step 3. The

Lemma 2.1.1 guarantees that the direction dk chosen belongs to the set Df (x
k), which

means, by the very definition of Df (x
k) , that it is possible to take tk > 0 such that

f(xk + tkd
k) < f(xk), therefore it is possible to execute the step 4. As we already have

the point xk and we have already chosen dk and tk, it is possible to define xk+1 with the

desired descent property and update the value of k to perform the procedure for the new

point xk+1 obtained, that is, it is possible to execute step 5.

By the structure of Algorithm 1, we either find a critical point after a finite number

of iterations or generate a sequence {xk} such that the sequence {f(xk)} is decreasing.

Let {xk} be a sequence generated by the Algorithm 1. The next examples show that
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{xk} can have cluster points that are not critical points of the Problem (2.1). Furthermore,

they show that the choice of step size tk influences the convergence of the sequence {xk}.

If the step size is too small, the sequence {xk} may converge to a point that is not

critical and if the step size is too large, the sequence {xk} may not converge and generate

non-critical cluster points.

Example 2.1.1. Let f : R → R be given by f(x) = x2. Clearly, f has a critical

point (global minimum) at x∗ = 0. Note that d = −1 ∈ Df (x), for every x > 0 and

d = 1 ∈ Df (x), for every x < 0. We run Algorithm 1 for different starting points with

the stepsize tk =
1

2k+1
and tk = 2 +

3

2k+1
with the stop rule while k ≤ 500.

(a) x0 = −2 (b) x0 = 1.5 (c) x0 = 2

Figure 2.2: Algorithm 1 for Example 2.1.1 with tk =
1

2k+1 .

(a) x0 = −2 (b) x0 = 1.5 (c) x0 = 2

Figure 2.3: Algorithm 1 for Example 2.1.1 with tk = 2 + 3
2k+1 .

In the Figure 2.2, since we chose tk = 1
2k+1 then tk converges to 0 when k goes to

infinity. For example, when k = 50, t50 = 1
250+1 = 4.4409e−16; when k = 200, t200 =

1
2200+1 = 3.1115e−61; when k = 500, t500 =

1
2500+1 = 1.5275e−151. This shows that over the

first few iterations the step size becomes so small that the sequence {xk} converges on a

point that is not critical.
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In Figure 2.3, since we chose tk = 2 + 3
2k+1 then tk converges to 2 when k goes to

infinity. For example, when k = 50, t50 = 2 + 3
250+1 = 2 + 1.3323e−15; when k = 200,

t200 = 2+ 3
2200+1 = 2+9.3345e−61; when k = 500, t500 = 2+ 3

2500+1 = 2+4.5824e−151. This

shows that during the first few iterations the step size is already close to 2. Since 2 is a

large step size, the sequence {xk} skips the critical point and generates two cluster points

that are not critical.

A good choice of step size tk consists of preventing the step length from being too

small or too large, and balancing this with the decrease promoted in the function f .

Given a function f : Rn → R, a point xk and a direction dk ∈ Df (x
k), a natural

strategy is to search for a suitable tk along the half-line xk + tdk, t ≥ 0.

Line search. The step size is calculated by observing the behavior of the function f

along the half-line xk + tdk, t ≥ 0, or along a limited interval in the same direction.

Among the line search rules, we will look at the one-dimensional minimization rule

(exact search), Armijo rule (inexact search) and the fixed step size rule. Let us fix xk ∈ Rn

and dk ∈ Df (x
k).

One-dimensional minimization rule. The strategy is to minimize the objective

function on the half-line xk + tdk, t ≥ 0. The step size tk is given by the condition

f(xk + tkd
k) = min

t≥0
f(xk + tdk),

i.e,

tk = argmin
t≥0

f(xk + tdk). (2.2)

Since we chose dk ∈ Df (x
k), there exists ε > 0 such that f(xk + tdk) < f(xk) for all

t ∈ (0, ε]. By the structure of the rule, this tk is the “best” possible in the sense that for

all t ≥ 0, f(xk + tkd
k) ≤ f(xk + tdk).

An advantage of using the one-dimensional minimization rule is that, in each iteration

of the method, we choose the “best” tk possible, i.e. the tk that decreases the function f

the most along the corresponding half-line. One disadvantage is that, in each iteration, it

is necessary to solve a one-dimensional minimization Subproblem (2.2) in order to choose

the value of tk.

Remark 2.1.1. By relation (2.2), we have that tk = argmint≥0 φk(t), where φk : R+ →

R, φk(t) = f(xk+tdk). Since dk ∈ Df (x
k) then f(xk+tkd

k) < f(xk+0dk), this guarantees

us that tk > 0. In this case, if the function f is differentiable at the point xk+1, by the
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Proposition 1.0.1 we have that

0 = φ
′

k(tk) = ⟨∇f(xk + tkd
k), dk⟩ = ⟨∇f(xk+1), dk⟩. (2.3)

See the Figure 2.1 below

Figure 2.4: Illustration of the property 2.3

Armijo rule. The idea is to find a step size αk that provides a reasonable decrease

in the function f , without trying to minimize it. Suppose that f is differentiable at the

point xk. We fix the parameters α̂ > 0, σ, θ ∈ (0, 1). We take α := α̂.

1. We check whether the inequality

f(xk + αdk) ≤ f(xk) + σα⟨∇f(xk), dk⟩ (2.4)

whether it satisfies or not.

2. If (2.4) is not satisfied, we take α := θα and return to Step 1.

Otherwise, we accept αk = α as the step size value.

By constructing Armijo rule, αk is the largest among all numbers of the form α̂θi,

i = 0, 1, 2, ..., which satisfies the inequality (2.4).

Since f is differentiable at point xk, we have

f(xk + αdk)− f(xk) ≈ f(xk) + α⟨∇f(xk), dk⟩ − f(xk)

= α⟨∇f(xk), dk⟩,
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which gives us an interpretation for the number α⟨∇f(xk), dk⟩. It represents the estimate

of real decrease, given by the linear approximation of f at the point xk, for the step size

α in the direction dk. Therefore σα⟨∇f(xk), dk⟩, in the inequality (2.4), is a fraction of

this estimate (determined by σ ∈ (0, 1)), then αk is chosen so that the actual decrease in

f is at least the fraction (determined by σ ∈ (0, 1)) of the foreseen.

Figure 2.5: Illustration of the values of α that satisfy Armijo’s rule and their respective

images that satisfy the condition (2.4).

Step 1 of Armijo rule checks whether the parameter α provides a reasonable decrease

in the function f , in order to satisfy the inequality (2.4). If the parameter α satisfies (2.4),

then we accept it as the step size value. Otherwise, we use the θ parameter to reduce it

and go back to step 1 to check if the new α provides the desired decrease. See the Figure

2.1.

The next lemma guarantees that Armijo rule is well defined and that this process ends

in a finite number of iterations.

Lemma 2.1.2. Let f : Rn → R be a differentiable function at the point xk ∈ Rn. Suppose

that dk ∈ Rn satisfies ⟨∇f(xk), dk⟩ < 0. Then the inequality (2.4) is satisfied for all

sufficiently small α > 0. In particular, Armijo rule is well defined and ends with a

αk > 0.

Proof. For all α > 0, as f is differentiable at the point xk ∈ Rn, we have that

f(xk + αdk) = f(xk) + ⟨∇f(xk), αdk⟩+ o(α),
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with limα→0+
o(α)
α

= 0. Thus,

f(xk + αdk)− f(xk) = α⟨∇f(xk), dk⟩+ o(α)

= σα⟨∇f(xk), dk⟩+ (1− σ)α⟨∇f(xk), dk⟩+ o(α)

= σα⟨∇f(xk), dk⟩+ α

(
(1− σ)⟨∇f(xk), dk⟩+ o(α)

α

)
.

Since limα→0+
o(α)
α

= 0 and 0 < − (1−σ)
2

⟨∇f(xk), dk⟩, there exists δ > 0 such that if

α ∈ (0, δ),
o(α)

α
≤ −(1− σ)

2
⟨∇f(xk), dk⟩.

Thus,

(1− σ)⟨∇f(xk), dk⟩+ o(α)

α
≤ (1− σ)⟨∇f(xk), dk⟩ − (1− σ)

2
⟨∇f(xk), dk⟩

=
(1− σ)

2
⟨∇f(xk), dk⟩

< 0, ∀ α ∈ (0, δ).

Therefore,

f(xk + αdk)− f(xk) = σα⟨∇f(xk), dk⟩+ α

(
(1− σ)⟨∇f(xk), dk⟩+ o(α)

α

)
≤ σα⟨∇f(xk), dk⟩, ∀α ∈ (0, δ).

This shows that the inequality (2.4) is satisfied for all sufficiently small α.

As α̂θi → 0, when i → ∞, there exists i0 ∈ N ∪ {0} such that if i ≥ i0 then α̂θi ∈ (0, δ),

that is, all these α̂θi satisfy inequality (2.4) with the largest of them being α̂θi0 . Now it

remains to choose αk as the largest of the numbers α̂θi, i = 0, 1, ..., i0, which satisfies the

inequality (2.4). This shows that, in particular, Armijo rule is well defined and ends with

a αk > 0.

An advantage of using Armijo rule is that, in each iteration of the method, we choose

the step size αk without having to solve a one-dimensional minimization subproblem

and with the guarantee that αk provides a reasonable decrease of the f function. A

disadvantage is that, for each k, as we need to check whether the inequality (2.4) is

satisfied or not, it is necessary to evaluate the function f at the corresponding points and

calculate σα⟨∇f(xk), dk⟩, if evaluating the function f has a high computational cost, then

this can considerably increase the time to obtain the step αk .

The Lemma 2.1.2 guarantees that for every sufficiently small α, Armijo rule is well

defined. If we add the hypothesis that the gradient of the function f is Lipschitz, then
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for every k, it is possible to obtain a constant ᾱk that guarantees that every α ∈ (0, ᾱk]

satisfies the inequality (2.4).

Lemma 2.1.3. Let f : Rn → R be a differentiable function on Rn, with Lipschitz-

continuous gradient on Rn with constant L > 0.

If xk, dk ∈ Rn satisfy ⟨∇f(xk), dk⟩ < 0 , then the inequality (2.4) is valid for all

α ∈ (0, ᾱk], where

ᾱk =
2(σ − 1)⟨∇f(xk), dk⟩

L∥dk∥2
> 0. (2.5)

Proof. By the Proposition 1.0.2, for all α ∈ R, we have that∣∣f(xk + αdk)− f(xk)− ⟨∇f(xk), αdk⟩
∣∣ ≤ L

2
∥αdk∥2.

Thus,

f(xk + αdk)− f(xk) ≤ α⟨∇f(xk), dk⟩+ L

2
α2∥dk∥2

= α

(
⟨∇f(xk), dk⟩+ L

2
α∥dk∥2

)
.

Therefore, for all α ∈ (0, ᾱk],

f(xk + αdk)− f(xk) ≤ α

(
⟨∇f(xk), dk⟩+ L

2
ᾱk∥dk∥2

)
= α

(
⟨∇f(xk), dk⟩+ L

2

2(σ − 1)⟨∇f(xk), dk⟩
L∥dk∥2

∥dk∥2
)

= α
(
⟨∇f(xk), dk⟩+ (σ − 1)⟨∇f(xk), dk⟩

)
= σα⟨∇f(xk), dk⟩.

We use the Proposition 1.0.2 in the Lemma 2.1.3 to estimate f(xk + αdk) − f(xk)

by α⟨∇f(xk), dk⟩+ L
2
α2∥dk∥2. Note that if α⟨∇f(xk), dk⟩+ L

2
α2∥dk∥2 ≤ σα⟨∇f(xk), dk⟩,

then
Lα∥dk∥2

2
≤ (σ − 1)⟨∇f(xk), dk⟩,

thus,

α ≤ 2(σ − 1)⟨∇f(xk), dk⟩
L∥dk∥2

,

which gives an idea for choosing ᾱk.

Under the hypotheses of the Lemma 2.1.3, if

⟨∇f(xk), dk⟩
∥dk∥2

≤ δ < 0, (2.6)
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where δ is a constant that does not depend on k and if the parameters α̂, σ and θ are the

same for each iteration, multiplying the inequality (2.6) by (σ − 1), we have that

0 < δ(σ − 1) ≤ (σ − 1)⟨∇f(xk), dk⟩
∥dk∥2

,

now multiplying the inequality by 2
L
,

0 <
2δ(σ − 1)

L
≤ 2(σ − 1)⟨∇f(xk), dk⟩

L∥dk∥2
,

that is,

0 <
−2δ(1− σ)

L
≤ 2(σ − 1)⟨∇f(xk), dk⟩

L∥dk∥2
,

which means,

0 < ᾱ ≤ ᾱk, ∀k, where ᾱ :=
−2δ(1− σ)

L
> 0.

Therefore, the inequality (2.4) is satisfied for all α ∈ (0, ᾱ]. We know that αk is the

largest number of the form α̂θi, i = 0, 1, 2, ..., which satisfies the inequality (2.4). Since

step size value greater than αk was not accepted, then either i = 0 (and in this case αk

is the largest allowed value, i.e. αk = α̂) or i ̸= 0 (and in this case αk

θ
= α̂θi

θ
= α̂θi−1 was

not accepted), thus

either αk = α̂ or
αk

θ
> ᾱ,

that is,

either αk = α̂ or αk > θᾱ.

therefore,

αk ≥ min{α̂, θᾱ} := α̌ > 0, ∀k.

Fixed step size rule. We fix a number t̂ > 0 that does not depend on k and take

tk = t̂ for all iterations.

An advantage of using the fixed step size rule is that it is the simplest rule among those

presented. On the other hand, this causes the rule to have major drawbacks, as prefixing

a step size value for all iterations causes “best” step lengths to be ignored. Furthermore,

if the size of fixed step is too large, this may result in the method not converging; and if

it is too small, then convergence may be very slow (considerably increasing the number

of method iterations).

Remark 2.1.2. Assuming that the hypotheses of the Lemma 2.1.3 and the condition (2.6)

hold, then Armijo inequality (2.4) will hold for t̂, if t̂ ∈ (0, ᾱ]. In Armijo rule, defining
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α̂ := t̂, we obtain that α1 = t̂, α2 = t̂, α3 = t̂, and so on. This shows that the convergence

of methods with sufficiently fixed step size small follows from the convergence of methods

using Armijo rule.

2.2 Gradient method

The three most important properties of the gradient of a differentiable function are as

follows: Given x ∈ Rn such that ∇f(x) ̸= 0, then

1. The gradient is a direction in which the function f is increasing.

2. Among all the directions along which the function f grows, the direction of the

gradient is the fastest growing.

3. The gradient of f at point x is perpendicular to the level surface of f that passes

through that point.

The above results are well known and can be found, for example, in [9] and [14].

This motivates the definition of the gradient method to solve (2.1), since −∇f(x) is a

direction of descent of the function f at the point x and is the direction of decrease most

fast.

Suppose that the function f is differentiable in Rn. In the context of descent methods,

the gradient method is, by definition,

xk+1 = xk − αk∇f(xk), k = 0, 1, 2, ..., (2.7)

that is, we take the direction of descent dk = −∇f(xk), for all k. If ∇f(xk) = 0, for some

k, xk is a critical point of the Problem (2.1) and the method stops.

Algorithm 2 Gradient method

1: Choose x0 ∈ Rn and set k := 0;

2: while ||∇f(xk)|| ≠ 0 do

3: Choose dk = −∇f(xk);

4: Choose tk > 0 such that f(xk + tkd
k) < f(xk), using one of the three search rules

presented (one-dimensional minimization rule, Armijo rule or fixed step size rule);

5: Set xk+1 := xk + tkd
k;

6: Update k := k + 1;

7: end while
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The gradient method using one-dimensional minimization is called the maximum de-

scent method. Since we take dk = −∇f(xk) and use one-dimensional minimization, by

(2.3), it follows that

⟨∇f(xk+1),∇f(xk)⟩ = 0, (2.8)

therefore, the directions used in subsequent iterations are orthogonal. Then, by (2.7) and

(2.8), see that for arbitrary k,

⟨xk+2 − xk+1, xk+1 − xk⟩ = ⟨−αk+1∇f(xk+1),−αk∇f(xk)⟩

= αk+1αk⟨∇f(xk+1),∇f(xk)⟩

= 0,

therefore,

(xk+2 − xk+1) ⊥ (xk+1 − xk). (2.9)

This justifies and illustrates the fact that the method has a “zig-zag” trajectory

throughout the iterations. See the figure 2.2 below.

Figure 2.6: Illustration of property (2.9).

Armijo inequality (2.4) is given by

f(xk − αk∇f(xk)) ≤ f(xk)− σαk∥∇f(xk)∥2. (2.10)

When ∇f(xk) ̸= 0, we have

⟨∇f(xk), dk⟩
∥dk∥2

=
⟨∇f(xk),−∇f(xk)⟩

∥−∇f(xk)∥2
= −1 < 0,
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in this case, the condition (2.6) is satisfied with δ = −1 and the estimate (2.5) of longest

step is given by

ᾱk =
2(1− σ)

L
> 0. (2.11)

As ᾱk does not depend on k, when the gradient of the function f is Lipschitz continuous

in Rn and the Armijo rule is being used, at least Lemma 2.1.3 and subsequent comments,

we have

αk ≥ α̌ > 0, (2.12)

where α̌ does not depend on k.

Theorem 2.2.1. Let f : Rn → R be a differentiable function on Rn, with Lipschitz-

continuous gradient on Rn with module L > 0. In the case where the Algorithm 2 uses a

fixed step size, let us assume that t̂ is such that

0 < t̂ <
2

L
. (2.13)

Then, if a sequence {xk} generated by the Algorithm 2 has a cluster point, or if the

function f is lower bound in Rn, we have that

{∇f(xk)} → 0 (k → ∞). (2.14)

In particular, each cluster point of any sequence {xk} generated by the Algorithm 2 is a

critical point of the Problem (2.1).

Proof. Let us first consider the case of Armijo rule. If ∇f(xk) ̸= 0 for all k, then the

sequence {f(xk)} is decreasing. Suppose that the sequence {xk} has a cluster point. Then

there is a subsequence {xkj} → x̄, when j → ∞. Due to the continuity of f , we have

limj→∞ f(xkj) = f(x̄), therefore f(x̄) is a cluster point of the sequence {f(xk)}. Since

{f(xk)} is monotone and has a bounded subsequence {f(xkj)}, then {f(xk)} is bounded

too. Thus, as {f(xk)} is monotone and bounded, {f(xk)} is convergent. If the function

f is lower bounded on Rn, then {f(xk)} is convergent (even if {xk} does not have cluster

points). By the Armijo inequality (2.10) and (2.12), for all k, we have

f(xk)− f(xk+1) ≥ σαk∥∇f(xk)∥2 ≥ σα̌∥∇f(xk)∥2 > 0. (2.15)

Since limk→∞ f(xk)− f(xk+1) = 0, we have limk→∞ σα̌∥∇f(xk)∥2 = 0. Therefore,

lim
k→∞

∇f(xk) = 0
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which guarantees (2.14). In particular, if {xkj} converges to x̄, as the gradient of the

function f is continuous on Rn, it follows that

0 = lim
j→∞

∇f(xkj) = ∇f(x̄),

that is, x̄ is a critical point of the Problem (2.1).

Let us now consider the case of the one-dimensional minimization rule. For all k, let

us denote by x̃k+1 the point that would be obtained by Armijo rule, with α̃k being the

associated step size. By the definition of xk+1, we have

f(xk)− f(xk+1) ≥ f(xk)− f(x̃k+1) ≥ σα̃k∥∇f(xk)∥2 ≥ σα̌∥∇f(xk)∥2 > 0.

Thus, the result follows from the previous analysis by replacing αk with α̃k.

Now considering the case of the fixed step size rule, we take αk = t̂ for all iterations.

By hypothesis, (2.13), we are assuming that t̂ < 2
L
. In the gradient method, we saw that

the longest step estimate is given by the condition (2.11), as we take αk = t̂ < 2
L
, for σ

sufficiently small, we have

αk = t̂ <
2

L
(1− σ) <

2

L
, ∀k,

that is, the choice of step size belongs to the set (0, ᾱk], ∀k. This shows that if t̂ < 2
L

and we do α̂ := t̂ in Armijo rule, with σ small enough, using the fixed step size rule is

equivalent to using Armijo rule where in each iteration the inequality (2.4) is already true

for α = t̂. Therefore, the result follows from the analysis made in the case of the Armijo

Rule.

In the proof of the Theorem 2.2.1, particularly in the inequality (2.15), the importance

of the step size αk not tending to 0 becomes evident. It is possible to exchange the

hypothesis that the gradient of f is Lipschitz-continuous with the weaker hypothesis that

it is continuous. In this case, the condition (2.12) may not happen and this makes the

argument made in (2.15) impossible.

Theorem 2.2.2. Let f : Rn → R be a differentiable function in Rn, with a continuous

gradient. Let’s suppose that the Algorithm 2 uses one-dimensional minimization or Armijo

rule.

Then each cluster point of any sequence {xk} generated by the Algorithm 2 is a critical

point of the Problem (2.1).
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Proof. The case in which the Algorithm 2 uses the one-dimensional minimization rule

reduces to the case of Armijo rule in the same way as in the demonstration of the Theorem

2.2.1. Therefore, let us consider the Armijo rule.

Suppose that the Algorithm 2 uses the Armijo rule and {xk} is a generated sequence.

Suppose that {xk} has an cluster point x̄ ∈ Rn and that ∇f(xk) ̸= 0 for all k. Then there

is a subsequence {xkj} that converges to x̄ and {f(xk)} is decreasing.

Suppose that there exists α̌ > 0 such that αkj ≥ α̌, for all j. Due to the continuity of f ,

we have that limj→∞ f(xkj) = f(x̄), hence f(x̄) is a cluster point of the sequence {f(xk)}.

Since {f(xk)} is monotone and has a bounded subsequence {f(xkj)}, it follows that

{f(xk)} is bounded. Thus, as {f(xk)} is monotone and bounded, {f(xk)} is convergent.

Using that {f(xk)} is decreasing and Armijo inequality, for all j, we obtain that

f(xkj+1) ≤ f(xkj+1−1) ≤ . . . ≤ f(xkj+1)

≤ f(xkj)− σαkj∥∇f(xkj)∥2,

thus,

f(xkj)− f(xkj+1) ≥ σαkj∥∇f(xkj)∥2 ≥ σα̌∥∇f(xkj)∥2 > 0.

Since limj→∞ f(xkj)− f(xkj+1) = 0, we have limj→∞ σα̌∥∇f(xkj)∥2 = 0. Therefore,

lim
j→∞

∇f(xkj) = 0.

Since the gradient of the function f is continuous in Rn and the subsequence {xkj} con-

verges to x̄, we have

0 = lim
j→∞

∇f(xkj) = ∇f(x̄),

therefore x̄ is a critical point of the Problem (2.1).

Suppose that there is no α̌ > 0 such that αkj ≥ α̌, for all j. Then for every α̌ > 0

there is a j ∈ N such that αkj < α̌. In particular, for every i ∈ N, such as 1
i
> 0, there

exists ji ∈ N such that αkji
< 1

i
. Thus, the sequence {αkj}j∈N has a subsequence {αkji

}i∈N
which converges to 0, when i → ∞. Therefore, without loss of generality, we will assume

that {αkj} → 0, when j → ∞. Combining this information and step 2 of Armijo rule,

for every sufficiently large j, the initial value of the step size α̂ was reduced at least once.

Therefore,
αkj

θ
does not satisfy Armijo inequality (2.4), that is,

f
(
xkj −

αkj

θ
∇f(xkj)

)
> f(xkj)− σ

αkj

θ
∥∇f(xkj)∥2.
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denoting α̃kj =
αkj

θ
∥∇f(xkj)∥ and dividing the last inequality by α̃kj , we have

f
(
xkj −

αkj

θ
∇f(xkj)

)
− f(xkj)

α̃kj

> −σ∥∇f(xkj)∥,

or even,

f
(
xkj − α̃kj

∇f(xkj )

∥∇f(xkj )∥

)
− f(xkj)

α̃kj

> −σ∥∇f(xkj)∥. (2.16)

Applying the Mean Value Theorem 1.0.3, for each j there exists tkj ∈ [0, 1] such that

f

(
xkj − α̃kj

∇f(xkj)

∥∇f(xkj)∥

)
− f(xkj) =

=

〈
∇f

(
tkjx

kj + (1− tkj)(x
kj − α̃kj

∇f(xkj)

∥∇f(xkj)∥
)

)
, xkj − α̃kj

∇f(xkj)

∥∇f(xkj)∥
− xkj

〉
=

〈
∇f

(
xkj − α̃kj

∇f(xkj)

∥∇f(xkj)∥
+ tkj α̃kj

∇f(xkj)

∥∇f(xkj)∥

)
,−α̃kj

∇f(xkj)

∥∇f(xkj)∥

〉
=

〈
∇f

(
xkj − (1− tkj)α̃kj

∇f(xkj)

∥∇f(xkj)∥

)
,−α̃kj

∇f(xkj)

∥∇f(xkj)∥

〉
. (2.17)

Combining equality (2.17) and inequality (2.16), we have〈
∇f

(
xkj − (1− tkj)α̃kj

∇f(xkj )

∥∇f(xkj )∥

)
,−α̃kj

∇f(xkj )

∥∇f(xkj )∥

〉
α̃kj

> −σ∥∇f(xkj)∥,

that is,

−
〈
∇f

(
xkj − (1− tkj)α̃kj

∇f(xkj)

∥∇f(xkj)∥

)
,

∇f(xkj)

∥∇f(xkj)∥

〉
> −σ∥∇f(xkj)∥. (2.18)

Since {αkj} → 0, {tkj} is bounded and {∥∇f(xkj )∥
θ

} is bounded (because ∇f(xkj) →

∇f(x̄)), then α̃kj =
αkj

θ
∥∇f(xkj)∥ → 0 (j → ∞). Turning to the limit when j → ∞ in

the relation (2.18), we have

−
〈
∇f(x̄),

∇f(x̄)

∥∇f(x̄)∥

〉
≥ −σ∥∇f(x̄)∥

or,

−∥∇f(x̄)∥ ≥ −σ∥∇f(x̄)∥.

Since σ ∈ (0, 1), then ∇f(x̄) = 0, so x̄ is a critical point of the Problem 2.1.

Remark 2.2.1. A natural hypothesis is to assume that the level set Lf,Rn(f(x0)) is

bounded. If it is bounded, as we are working with descent methods, f(xk) ≤ f(x0), for all

k, therefore the sequence {xk} ⊂ L(f(x0)) and will also be bounded. This guarantees that

{xk} admits at least one cluster point and, according to the Theorems 2.2.1 and 2.2.2, it

will be a critical point.
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In Theorems 2.2.1 and 2.2.2, we proved that if the sequence {xk} has cluster points,

they are critical points of the Problem (2.1). If we add the assumption that the function f

is convex, then we obtain stronger convergence results. In this case, if the set of minimizers

is non-empty, then the sequence {xk} converges to a solution of the Problem (2.1).

Theorem 2.2.3. Let f : Rn → R be a convex function, differentiable in Rn, with contin-

uous gradient. Suppose that the Algorithm 2 uses the Armijo rule with α̂ ≤ 1. If the set

of unconstrained minimizers of f is non-empty, then any sequence {xk} generated by the

Algorithm 2 converges to a solution of the Problem (2.1).

Proof. Let x̄ ∈ Rn be a solution to the problem. By Armijo inequality (2.10), for all k,

we have

f(xk)− f(xk+1) ≥ σαk∥∇f(xk)∥2.

Then,

f(x0)− f(x̄) ≥ f(x0)− f(xk)

= f(x0)− f(x1) + f(x1)− f(x2) + f(x2)− . . .

− f(xk−2) + f(xk−2)− f(xk−1) + f(xk−1)− f(xk)

=
k−1∑
i=0

(f(xi)− f(xi+1))

≥ σ
k−1∑
i=0

αi∥∇f(xi)∥2.

Passing the limit when k → ∞, we have

∞∑
i=0

αi∥∇f(xi)∥2 ≤ f(x0)− f(x̄)

σ
. (2.19)

Due to the convexity of the function f , the Proposition 1.0.4 and the optimality of x̄,

we have that

⟨∇f(xk), x̄− xk⟩ ≤ f(x̄)− f(xk) ≤ 0. (2.20)
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Using (2.7), (2.20) and the relation α2
k ≤ αk, we have that

∥xk+1 − x̄∥2 = ∥xk − x̄+ xk+1 − xk∥2

= ⟨xk − x̄+ xk+1 − xk, xk − x̄+ xk+1 − xk⟩

= ∥xk − x̄∥2 + 2⟨xk − x̄, xk+1 − xk⟩+ ∥xk+1 − xk∥2

= ∥xk − x̄∥2 + 2⟨xk − x̄,−αk∇f(xk)⟩+ ∥−αk∇f(xk)∥2

= ∥xk − x̄∥2 + 2αk⟨∇f(xk), x̄− xk⟩+ α2
k∥∇f(xk)∥2

≤ ∥xk − x̄∥2 + αk∥∇f(xk)∥2. (2.21)

Let us fix an arbitrary k. Using the inequality (2.21) in chain, for all j ≥ k + 1, we

have that

∥xj − x̄∥2 ≤ ∥xj−1 − x̄∥2 + αj−1∥∇f(xj−1)∥2

≤ ∥xj−2 − x̄∥2 + αj−2∥∇f(xj−2)∥2 + αj−1∥∇f(xj−1)∥2

...

≤ ∥xk − x̄∥2 +
j−1∑
i=k

αi∥∇f(xi)∥2 (2.22)

≤ ∥xk − x̄∥2 +
∞∑
i=0

αi∥∇f(xi)∥2 < +∞,

where we used (2.19) in the last inequality. This shows that the sequence {xk} is bounded,

so {xk} has an cluster point x̂. Thus, Theorem 2.2.2 guarantees that ∇f(x̂) = 0. Using

convexity, we conclude that x̂ is a solution to the Problem (2.1) (by Theorem 2.2.2). So

the same analysis for x̄ can be done for x̂. Therefore, from (2.22), for all j ≥ k + 1, we

have

∥xj − x̂∥2 ≤ ∥xk − x̂∥2 +
∞∑
i=k

αi∥∇f(xi)∥2, (2.23)

and from (2.19), we have

lim
k→∞

(
∞∑
i=k

αi∥∇f(xi)∥2
)

= 0.

Given δ > 0 arbitrarily small, there exists k1 ∈ N such that if k > k1, then
∞∑
i=k

αi∥∇f(xi)∥2 < δ

2
.

Since x̂ is an cluster point of the sequence {xk}, there exists k2 ∈ N such that k2 > k1

and

∥xk2 − x̂∥2 < δ

2
.
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From the relation (2.23), for all δ > 0,

∥xj − x̂∥2 ≤ ∥xk2 − x̂∥2 +
∞∑

i=k2

αi∥∇f(xi)∥2

<
δ

2
+

δ

2
= δ, j ≥ k2 + 1.

This proves that {xk} converges to x̂.



Chapter 3

Subgradient method

The chapter will be divided into two sections. In the first section, we will present the first

changes that arise when we move from the differentiable context to the non-differentiable

context. The main results are the fact that given y ∈ ∂f(x), it can happen that −y /∈

Df (x), that in general we only know one subgradient at each point and the difficulty in

choosing stopping rules. In the second section, we will introduce the subgradient method,

which is not necessarily a descent method, in each iteration we take the next step in the

opposite direction of a subgradient, and in the simplest cases the step size is pre-fixed

and is not chosen using a line search. We will also present step size rules and perform a

convergence analysis of the method. The main results are some inequalities that help in

the proof of convergence and the proofs of convergence.

The construction of the first and second sections were based on references [2, 4, 16,

19, 21].

3.1 Non-differentiable convex optimization

Let us consider the unconstrained minimization problem

min f(x)

s.t. x ∈ Rn

(3.1)

where f : Rn → R is a convex function in Rn. Therefore, f may not be differentiable.

By the Proposition 1.0.5, the directional derivative of the function f at the point

x ∈ Rn in the direction d ∈ Rn satisfies the following condition

f ′(x; d) = max{⟨y, d⟩ | y ∈ ∂f(x)}, (3.2)

27
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where ∂f(x) is the subdifferential of f at the point x defined in 1.0.5, that is,

∂f(x) = {y ∈ Rn | f(z) ≥ f(x) + ⟨y, z − x⟩, ∀z ∈ Rn}. (3.3)

Given d ∈ Df (x), there exists ε > 0 such that f(x + td) < f(x) for all t ∈ (0, ε].

Thus f(x+td)−f(x)
t

< 0, for all t ∈ (0, ε], therefore f ′(x; d) ≤ 0. Using the relation (3.2),

we conclude that max{⟨y, d⟩ | y ∈ ∂f(x)} ≤ 0 and, therefore, that ⟨y, d⟩ ≤ 0 for all

y ∈ ∂f(x).

On the other hand, if ⟨y, d⟩ < 0 for all y ∈ ∂f(x) then max{⟨y, d⟩ | y ∈ ∂f(x)} < 0.

Using the relation (3.2), we conclude that f ′(x; d) < 0 and therefore, there exists δ > 0

such that f(x+td)−f(x)
t

< 0 for all t ∈ (0, δ]. Thus, f(x + td) < f(x) for all t ∈ (0, δ] and

therefore d ∈ Df (x).

Thus, for d ∈ Df (x) it is necessary that ⟨y, d⟩ ≤ 0 for all y ∈ ∂f(x), and for ⟨y, d⟩ < 0

for all y ∈ ∂f(x) it is necessary that d ∈ Df (x). In both cases, it is necessary to know

the entire set ∂f(x).

Next, we will see that given y ∈ ∂f(x), it can happen that −y /∈ Df (x).

Example 3.1.1. Let f : R2 → R, f(x) = |x1|+ 2|x2|. Let us consider x = (x1, 0), where

x1 > 0 is arbitrary. First, we will show that

y = (1, 2) ∈ ∂f(x).

In fact, for all z = (z1, z2) ∈ R2, we have that

|z1|+ 2|z2| ≥ z1 + 2z2,

using x = (x1, 0), we have

|z1|+ 2|z2| ≥ |x1|+ z1 − x1 + 2z2,

therefore, by defining the function f and manipulating the terms z1 − x1 + 2z2, we can

write

f((z1, z2)) ≥ f((x1, 0)) + ⟨(1, 2), (z1, z2)− (x1, 0)⟩,

i.e,

f(z) ≥ f(x) + ⟨y, z − x⟩.
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Now, let’s show that −y /∈ Df (x). In fact, for every sufficiently small t > 0,

f(x− ty) = f((x1 − ty1, x2 − ty2)) = |x1 − ty1|+ 2|x2 − ty2| = |x1 − t|+ 2|0− 2t|

= x1 + 3t

> x1 = |x1|+ 2|x2| = f(x).

In general, we are able to evaluate the objective function at current points, we know a

subgradient at each point and combinations of this information throughout the iterations.

This means that it is not expected to know the entire set ∂f(x) in each x and with this

comes another difficulty in applying the ideas of descent methods in the non-differentiable

context.

In the differentiable context, a common stopping criterion is given by the condition

∥∇f(xk)∥ ≤ ε, for some small tolerance ε > 0. This condition does not directly apply to

the non-differentiable case because the set-point operator x → ∂f(x) is not “continuous”,

as we will see in the next example.

Example 3.1.2. Let f : R → R be given by f(x) = |x|. The point x = 0 is the only

unconstrained global minimizer of f . We have

∂f(x) =


−1, if x < 0

[−1, 1], if x = 0

1, if x > 0.

Then for every point xk ̸= 0, with xk converging to x = 0, we have that |y| = 1 for every

y ∈ ∂f(xk). Therefore, even if xk is close to the solution of the problem, ∂f(xk) does

not have subgradients with a small norm. Furthermore, it may happen that we find the

solution xk = 0 for some k, and this fact is not recognized by the method if we only know

one subgradient at each point, since we compute y ∈ ∂f(0) = [−1, 1] and therefore |y| can

be nonzero.

3.2 Subgradient method

Let us consider the following algorithm to solve the Problem (3.1), that is, to minimize a

convex function.
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Algorithm 3 Subgradient method

1: Choose a sequence {αk} ⊂ R+;

2: Choose x1 ∈ Rn and set k := 1;

3: Compute dk ∈ ∂f(xk);

4: Compute

xk+1 = xk − αkd
k; (3.4)

5: Set k := k + 1 and return to Step 3.

In step 1, we pre-fix a sequence of step sizes that will be taken in each iteration of

the method. In step 2, we take any starting point x1 ∈ Rn and set k := 1. In step 3, we

calculate some subgradient dk ∈ ∂f(xk), and, by the Proposition 1.0.5, the set ∂f(xk) is

non-empty. We are also assuming that it is possible to compute a subgradient at each

point. In step 4, we use the point xk, the step size αk and the subgradient dk to obtain

the point xk+1. In step 5, we do k := k + 1 and repeat the procedure for the new point

obtained.

According to the structure of the method, from xk, we calculate a subgradient dk in

the set ∂f(xk) and use the step size αk to walk in the opposite direction to the subgradi-

ent. Therefore, the subgradient method looks like the gradient method for differentiable

functions.

In the simplest cases, the sequence of step sizes {αk} is pre-fixed at step 1 and the

step size are not chosen using a line search.

As we saw in the example 3.1.1, given y ∈ ∂f(x) it can happen that −y /∈ Df (x).

Therefore, by building the Algorithm 3, the subgradient method is not necessarily a

descent method.

It is common that throughout the iterations, we keep the “best” point obtained so far,

that is, the point that provides the lowest value f so far. Thus, we define f 1
best = f(x1)

and for k ≥ 2,

fk
best = min{fk−1

best , f(x
k)}.

Therefore,

fk
best = min{f(x1), . . . , f(xk)},

that is, from a finite amount of points x1, . . . , xk obtained, we have a finite amount of

images f(x1), . . . , f(xk), and we take fk
best as the smallest of them all. As a consequence,
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the sequence {fk
best} is non-increasing.

Step size rules. Let us cover 5 basic step length rules. Specifically, the rules of con-

stant step size, constant step length, square summable but not summable, nonsummable

diminishing and nonsummable diminishing step lengths.

Constant step size. We choose the step size αk = α for all iterations, where α > 0

does not depend on k.

Constant step length. We choose the step size αk = γ
∥dk∥ , for all iterations, where

γ > 0 does not depend on k.

Square summable but not summable. We choose the sequence {αk} of step sizes

such that it satisfies the following conditions:

αk ≥ 0,
∞∑
k=1

αk = +∞,
∞∑
k=1

α2
k < +∞.

For example, αk = 1/k, for all k.

Nonsummable diminishing. We choose the sequence {αk} of step size such that it

satisfies the following conditions:

αk ≥ 0, lim
k→∞

αk = 0,
∞∑
k=1

αk = +∞.

For example, αk = 1/
√
k, for all k.

Nonsummable diminishing step lengths. We choose the step size αk = γk
∥dk∥ for

all iterations, where the sequence {γk} satisfies the following conditions:

γk ≥ 0, lim
k→∞

γk = 0,
∞∑
k=1

γk = +∞.

When using one of these 5 step length rules, it is defined and pre-fixed in step 1 of the

Algorithm 3, that is, it does not depend on data obtained during the iterations. Unlike

line search, which depends on the current point and the fixed descent direction.

Convergence analysis. We will prove convergence results for each of the 5 step

size rules presented. We will see that in the case of the constant step size and constant

step length rules we guarantee that fk
best converges to an interval “close” to the solution

f(x̄), and that in the case of the rules square summable but not summable, nonsummable

diminishing and nonsummable diminishing step lengths we guarantee that fk
best converges

to the solution f(x̄).
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For the analysis, we assume that there is a minimizer of f , say x̄. We assume that

there is a L such that ∥dk∥ ≤ L, for all k; this condition holds, for example, when the

function f is Lipschitz. We assume that we know R > 0 such that R ≥ ∥x1 − x̄∥.

Next, we will prove some classic inequalities that will be useful in convergence proofs.

By defining the point xk+1 in the relation 3.4, we obtain that

∥xk+1 − x̄∥2 = ∥xk − αkd
k − x̄∥2

= ∥xk − x̄− αkd
k∥2

= ⟨xk − x̄− αkd
k, xk − x̄− αkd

k⟩

= ∥xk − x̄∥2 − αk⟨xk − x̄, dk⟩ − αk⟨dk, xk − x̄⟩+ ∥−αkd
k∥2

= ∥xk − x̄∥2 − 2αk⟨dk, xk − x̄⟩+ α2
k∥dk∥2. (3.5)

Since dk ∈ ∂f(xk), by the definition of the subdifferential (3.3), we have

f(x̄) ≥ f(xk) + ⟨dk, x̄− xk⟩,

thus,

f(x̄)− f(xk) ≥ ⟨dk, x̄− xk⟩,

or even,

f(xk)− f(x̄) ≤ ⟨dk, xk − x̄⟩. (3.6)

Combining the equality (3.5) with the inequality (3.6), we obtain that

∥xk+1 − x̄∥2 ≤ ∥xk − x̄∥2 − 2αk

(
f(xk)− f(x̄)

)
+ α2

k∥dk∥2. (3.7)

This inequality (3.7) is the property that makes subgradient methods work. From

there, for sufficiently small steps, the distance to the set of solutions decreases.

Applying the inequality (3.7) as a chain, we have

∥xk+1 − x̄∥2 ≤ ∥xk − x̄∥2 − 2αk

(
f(xk)− f(x̄)

)
+ α2

k∥dk∥2

≤ ∥xk−1 − x̄∥2 − 2αk−1

(
f(xk−1)− f(x̄)

)
+ α2

k−1∥dk−1∥2

− 2αk

(
f(xk)− f(x̄)

)
+ α2

k∥dk∥2

...

≤ ∥x1 − x̄∥2 − 2
k∑

i=1

αi

(
f(xi)− f(x̄)

)
+

k∑
i=1

α2
i ∥di∥2,
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That is,

∥xk+1 − x̄∥2 ≤ ∥x1 − x̄∥2 − 2
k∑

i=1

αi

(
f(xi)− f(x̄)

)
+

k∑
i=1

α2
i ∥di∥2. (3.8)

As ∥xk+1 − x̄∥2 ≥ 0 and we are assuming that ∥x1 − x̄∥ ≤ R, by the inequality (3.8),

we obtain that

2
k∑

i=1

αi

(
f(xi)− f(x̄)

)
≤ R2 +

k∑
i=1

α2
i ∥di∥2. (3.9)

On the other hand, we have to

k∑
i=1

αi

(
f(xi)− f(x̄)

)
≥

k∑
i=1

αi

(
min

i=1,...,k
{f(xi)− f(x̄)}

)

= min
i=1,...,k

{f(xi)− f(x̄)}
k∑

i=1

αi

=
(
fk
best − f(x̄)

) k∑
i=1

αi,

thus,

2
k∑

i=1

αi

(
f(xi)− f(x̄)

)
≥ 2

(
fk
best − f(x̄)

) k∑
i=1

αi. (3.10)

Now, combining the inequalities (3.9) and (3.10), we have

2
(
fk
best − f(x̄)

) k∑
i=1

αi ≤ R2 +
k∑

i=1

α2
i ∥di∥2,

therefore,

fk
best − f(x̄) ≤ R2 +

∑k
i=1 α

2
i ∥di∥2

2
∑k

i=1 αi

. (3.11)

As we assume that ∥dk∥ ≤ L for all k, then from the inequality (3.11), we obtain that

fk
best − f(x̄) ≤ R2 + L2

∑k
i=1 α

2
i

2
∑k

i=1 αi

. (3.12)

From the inequality (3.12), we will obtain several convergence results.

Constant step size. Since αk = α for all k, then from inequality (3.12), we have

fk
best − f(x̄) ≤ R2 + L2

∑k
i=1 α

2

2
∑k

i=1 α

=
R2 + L2kα2

2kα

=
R2

2kα
+

L2α

2
,
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therefore,

lim
k→∞

fk
best − f(x̄) ≤ L2α

2
.

Then, using the subgradient method with constant step size, fk
best converges to a point

in the interval
[
f(x̄), f(x̄) + L2α

2

]
. As a consequence, the precision depends on the step

length value, as the smaller the value of α, the smaller L2α
2

will be.

Constant step length. Since αk = γ
∥dk∥ for all k, then by the inequality (3.11) and

by the fact that αi =
γ

∥di∥ ≥ γ
L
, we have

fk
best − f(x̄) ≤ R2 +

∑k
i=1 α

2
i ∥di∥2

2
∑k

i=1 αi

=
R2 +

∑k
i=1

γ2

∥di∥2∥d
i∥2

2
∑k

i=1
γ

∥di∥

=
R2 + kγ2

2
∑k

i=1
γ

∥di∥

≤ R2 + kγ2

2
∑k

i=1
γ
L

=
R2 + kγ2

2k γ
L

=
LR2

2kγ
+

Lγ

2
,

therefore,

lim
k→∞

fk
best − f(x̄) ≤ Lγ

2
.

Then, using the subgradient method with constant step length, fk
best converges to a

point in the interval
[
f(x̄), f(x̄) + Lγ

2

]
. Consequently, the precision depends on the value

of the step length, since the smaller the value of γ, the smaller Lγ
2

will be.

Square summable but not summable. Since we choose the sequence {αk} of step

sizes such that it satisfies the following conditions:

αk ≥ 0,
∞∑
k=1

αk = +∞, ᾱ =
∞∑
k=1

α2
k < +∞.

then by the inequality (3.12), we have that

fk
best − f(x̄) ≤ R2 + L2

∑k
i=1 α

2
i

2
∑k

i=1 αi

≤ R2 + L2
∑∞

i=1 α
2
i

2
∑k

i=1 αi

=
R2 + L2ᾱ

2
∑k

i=1 αi

.
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Since R2 + L2ᾱ is constant and limk→∞

(∑k
i=1 αi

)
= +∞ then limk→∞

R2+L2ᾱ

2
∑k

i=1 αi
= 0,

therefore,

lim
k→∞

fk
best − f(x̄) = 0.

Then, using the subgradient method with step length square summable but not

summable, fk
best converges to f(x̄), which is the solution to the problem.

Nonsummable diminishing. We choose the sequence {αk} of step sizes such that

it satisfies the conditions:

αk ≥ 0, lim
k→∞

αk = 0,
∞∑
k=1

αk = +∞,

and let ε > 0. Since limk→∞ αk = 0, there exists n1 ∈ N such that if i > n1, then αi ≤ ε
L2 .

On the other hand, since limk→∞

(∑k
i=1 αi

)
= +∞, there exists n2 ∈ N such that

n2∑
i=1

αi ≥
1

ε

(
R2 + L2

n1∑
i=1

α2
i

)
. (3.13)

Let n0 = max{n1, n2}. Then for k > n0, the right side of the inequality (3.12) can be

written as

R2 + L2
∑k

i=1 α
2
i

2
∑k

i=1 αi

=
R2 + L2

∑n1

i=1 α
2
i

2
∑k

i=1 αi

+
L2
∑k

i=n1+1 α
2
i

2
∑k

i=1 αi

=
R2 + L2

∑n1

i=1 α
2
i

2
∑k

i=1 αi

+
L2
∑k

i=n1+1 α
2
i

2
∑n1

i=1 αi + 2
∑k

i=n1+1 αi

. (3.14)

Now let us analyze each part of the relationship separately (3.14). For the first installment,

since n2 < k, we have

R2 + L2
∑n1

i=1 α
2
i

2
∑k

i=1 αi

≤ R2 + L2
∑n1

i=1 α
2
i

2
∑n2

i=1 αi

.

Using the relation (3.13), we have

1∑n2

i=1 αi

≤ ε

R2 + L2
∑n1

i=1 α
2
i

,

therefore,

R2 + L2
∑n1

i=1 α
2
i

2
∑k

i=1 αi

≤ R2 + L2
∑n1

i=1 α
2
i

2
∑n2

i=1 αi

≤ R2 + L2
∑n1

i=1 α
2
i

2

(
ε

R2 + L2
∑n1

i=1 α
2
i

)
=

ε

2
.
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For the second part of the relation (3.14), since αi ≥ 0 for all i, we have

L2
∑k

i=n1+1 α
2
i

2
∑n1

i=1 αi + 2
∑k

i=n1+1 αi

≤
L2
∑k

i=n1+1 α
2
i

2
∑k

i=n1+1 αi

.

Since αi ≤ ε
L2 if i > n1, then α2

i ≤ αi
ε
L2 if i > n1, thus,

∑k
i=n1+1 α

2
i ≤

∑k
i=n1+1 αi

ε
L2 ,

and therefore
L2
∑k

i=n1+1 α
2
i

2
∑k

i=n1+1 αi

≤
L2
∑k

i=n1+1 αi
ε
L2

2
∑k

i=n1+1 αi

=
ε

2
.

Finally, we conclude that

R2 + L2
∑k

i=1 α
2
i

2
∑k

i=1 αi

=
R2 + L2

∑n1

i=1 α
2
i

2
∑k

i=1 αi

+
L2
∑k

i=n1+1 α
2
i

2
∑n1

i=1 αi + 2
∑k

i=n1+1 αi

≤ ε

2
+

ε

2
= ε,

this shows that the right side of the inequality (3.12) converges to 0, and therefore,

limk→∞ fk
best − f(x̄) = 0.

Then, using the subgradient method with nonsummable diminishing step size, fk
best

converges to f(x̄), which is the solution to the problem.

Nonsummable diminishing step lengths. We choose the step size αk = γk
∥dk∥ for

all iterations, such that the sequence {γk} satisfies the following conditions:

γk ≥ 0, lim
k→∞

γk = 0,
∞∑
k=1

γk = +∞.

Using the inequality (3.11), we obtain that

fk
best − f(x̄) ≤ R2 +

∑k
i=1 α

2
i ∥di∥2

2
∑k

i=1 αi

=
R2 +

∑k
i=1 γ

2
i

2
∑k

i=1
γi

∥di∥

≤ R2 +
∑k

i=1 γ
2
i

2
L

∑k
i=1 γi

.

By the same analysis done in the case of nonsummable diminishing step size, it follows

that
R2+

∑k
i=1 γ

2
i

2
L

∑k
i=1 γi

converges to 0, when k → ∞, therefore limk→∞ fk
best − f(x̄) = 0.

Then, using the subgradient method with nonsummable diminishing step lengths, fk
best

converges to f(x̄), which is the solution to the problem.

A bound on the suboptimality bound. In the inequality (3.12), we estimate

the number fk
best − f(x̄) by

R2+L2
∑k

i=1 α
2
i

2
∑k

i=1 αi
. Since

R2+L2
∑k

i=1 α
2
i

2
∑k

i=1 αi
is a convex and symmetric
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function of α1, . . . , αk, so it reaches its smallest value when αi = α, for all i = 1, . . . , k,

see [4]. In this case, the optimal value is given by

R2 + L2kα2

2kα
.

Since we have equality

R2 + L2kα2

2kα
=

R2

kα
+ L2α

2
,

using the inequality between the arithmetic and geometric means (A.M)≥(G.M) for the

numbers R2

kα
and L2α, we obtain that

R2

kα
+ L2α

2
≥
√

R2

kα
L2α

=
RL√
k
,

and equality occurs when
R2

kα
= L2α,

that is, when

α =
R

L
√
k
=

(R
L
)

√
k
.

By this analysis, the choice of α1, . . . , αk that minimizes the estimate
R2+L2

∑k
i=1 α

2
i

2
∑k

i=1 αi
is

given by

αi =
(R
L
)

√
k
, i = 1, . . . , k,

and with this choice we obtain that

fk
best − f(x̄) ≤ RL√

k
.

Therefore, if we made any other step size choice for α1, . . . , αk, would have to

R2 + L2
∑k

i=1 α
2
i

2
∑k

i=1 αi

≥ RL√
k
.

Given ε > 0, so that the inequality

RL√
k
< ε,

is true, it is necessary that

k >

(
RL

ε

)2

.

this shows that if we use the estimate
R2+L2

∑k
i=1 α

2
i

2
∑k

i=1 αi
as the stopping criterion, then the

number of steps needed to obtain a guaranteed accuracy of ε is at least (RL/ε)2, for any

choice of step size for α1, . . . , αk. This shows that for this choice of stopping criterion, the

subgradient method will be very slow.



Chapter 4

Subgradient method with

non-monotone line search

The chapter will be divided into two sections. In the first section, we will present the

subgradient projection method with non-monotone line search algorithm, proposed in

[8]. This algorithm is not necessarily a descent method, but any potential increase in

the function values is limited by a non-increasing sequence of parameters. Moreover,

the step sizes are chosen adaptively using a non-monotone line search in the opposite

direction to a subgradient. The main results include the well-definition of the algorithm

and some inequalities that assist in the convergence proofs. In the second section, we

will present the convergence analysis of the method under additional assumptions on the

non-monotonicity sequence. The main results are the convergence proofs.

Consider the constrained minimization problem

min f(x)

s.t. x ∈ C,
(4.1)

where f : Rn → R is a convex function and C ⊂ Rn is a non-empty, convex and closed

set. We denote the set of solutions to Problem (4.1) by Ω* and the optimal value of the

function f by f*. In this chapter, we assume that:

(H1) f : Rn → R is a convex and Lf,C-Lipschitz continuous function;

(H2) f ∗ := infx∈C f(x) > −∞.

38
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4.1 The algorithm

Consider the following algorithm to solve the Problem (4.1):

Algorithm 4 SubGrad projection method with non-monotone line search

1: Fix c > 0, (γk)k∈N ⊂ R++ a non-increasing sequence, ρ > 1/2, β ∈ (0, 1) and α > 0.

Choose an initial point x1 ∈ C. Set α1 = α and k = 1;

2: Choose sk ∈ ∂f(xk). If sk = 0, then STOP and return xk;

3: Compute

lk := min{l ∈ N : βlαk ≤ cβγk, f(PC(xk − βlαksk)) ≤ f(xk)− ρ(βlαk)∥sk∥2 + γk};

(4.2)

4: Set xk+1 := PC(xk−βlkαksk), αk+1 := βlk−1αk. Update k := k+1 and return to Step

2.

Remark 4.1.1. By the Proposition 1.0.8, the set where the function f is not differentiable

is of zero measure, which means that f will almost always be differentiable. Since, in the

case where the function f is differentiable at a point x ∈ Rn and convex, the Proposition

1.0.6 guarantees that ∂f(x) = {∇f(x)}, then almost every direction opposite a subgradient

will be a descent direction. Thus, it is expected that the Algorithm 4 skips the points where

the function f is not differentiable and which are not minima points, and behaves in a

similar way to the gradient method with this non-monotone line search.

The next lemma guarantees that it is possible to calculate lk satisfying (4.2), as a con-

sequence, we will obtain two inequalities that will be important throughout the chapter.

Lemma 4.1.1. There exists lk satisfying (4.2). As a consequence, the following inequal-

ities hold:

αk+1 ≤ cγk, f(xk+1) ≤ f(xk)− ρβαk+1∥sk∥2 + γk, ∀k ∈ N, (4.3)

and xk+1 ∈ C for all k ∈ N.

Proof. Since the function f is continuous, the function PC is continuous, and the point

xk ∈ C, we have that limα→0+(f(PC(xk − αsk)) − f(xk) + ρα∥sk∥2) = 0. Thus, given

γk > 0, there exists ηk > 0 such that

f(PC(xk − αsk))− f(xk) + ρα∥sk∥2 < γk, ∀α ∈ (0, ηk],
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or equivalently,

f(PC(xk − αsk)) ≤ f(xk)− ρα∥sk∥2 + γk, ∀α ∈ (0, ηk]. (4.4)

Since β ∈ (0, 1), we have liml→∞ βlαk = 0. Since cβγk > 0 there exists l̄ ∈ N such that

l ≥ l̄ implies that βlαk ≤ cβγk. Since ηk > 0, there exists l̃ ∈ N such that l ≥ l̃ implies

that βlαk ∈ (0, ηk]. Taking l∗ = max{l̄, l̃}, then l ≥ l∗ implies that

βlαk ≤ cβγk, f(PC(xk − βlαksk)) ≤ f(xk)− ρ(βlαk)∥sk∥2 + γk.

Now it remains to take lk as the smallest of the numbers i = 0, 1, . . . , l∗ such that βiαk

satisfies the two inequalities of (4.2), that is,

βiαk ≤ cβγk, f(PC(xk − βiαksk)) ≤ f(xk)− ρ(βiαk)∥sk∥2 + γk,

this proves that there is lk satisfying (4.2).

From βlkαk ≤ cβγk, we obtain that βlk−1αk ≤ cγk, which by the definition of αk+1 in

Step 4 means that αk+1 ≤ cγk.

From f(PC(xk − βlkαksk)) ≤ f(xk) − ρ(βlkαk)∥sk∥2 + γk, from the definition of xk+1

and αk+1 in Step 4, we obtain that f(xk+1) ≤ f(xk)− ρβαk+1∥sk∥2 + γk.

From the definition of xk+1 and αk+1, as C is convex and closed, it follows that xk+1 ∈ C,

for all k.

In step 1 of the Algorithm 4, we fix the parameters that will be used during the iter-

ations and the sequence (γk)k∈N of non-monotonicity that will be used in the line search.

In step 2, we calculate some subgradient sk ∈ ∂f(xk), given that, by the Proposition 1.0.5

the set ∂f(xk) is non-empty. If sk = 0, by the Proposition 1.0.7, we find the solution. In

step 3, we calculate lk satisfying (4.2). As we saw previously, the Lemma 4.1.1 guarantees

the existence of lk. Therefore, of the numbers βlαk that satisfy the two inequalities in

(4.2), as β ∈ (0, 1), then βlkαk is the biggest of them. In step 4, we use βlkαk as the step

size in the direction of −sk, and project the point xk −βlkαksk in the set C. Additionally,

we use lk to define αk+1 := βlk−1αk which will be used to compute the new step size. We

do k := k + 1 and repeat the procedure.

From the second inequality in (4.3), we have f(xk+1) ≤ f(xk)− ρβαk+1∥sk∥2 + γk for

all k. Since −ρβαk+1∥sk∥2 ≤ 0, it follows that

f(xk+1) ≤ f(xk) + γk, ∀k ∈ N.
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Since γk > 0 for all k, the inequality above shows that f(xk) < f(xk+1) can happen, since

−sk may not be a direction of descent, but we certainly have that f(xk+1) ≤ f(xk) + γk.

Later, we will make hypotheses that cause γk to approach de 0 asymptotically.

Thus, the step size was chosen using a non-monotone line search in the opposite

direction to the subgradient (made in calculating the number lk) and the possible increase

of the objective function is limited by a sequence of positive parameters that implicitly

control step size as we saw in the previous paragraph.

In the next lemma, we will prove classical inequalities that will be useful in convergence

proofs.

Lemma 4.1.2. For every x ∈ Rn, we have

2βαk+1(f(xk)− f(x)) ≤ ∥xk − x∥2 − ∥xk+1 − x∥2 + β2α2
k+1∥sk∥2, ∀k ∈ N. (4.5)

Additionally, if f is a σ-strongly convex function, then

2βαk+1(f(xk)− f(x)) ≤ (1− σβαk+1)∥xk − x∥2 − ∥xk+1 − x∥2 + β2α2
k+1∥sk∥2, ∀k ∈ N.

(4.6)

Proof. Since the inequality (4.6) reduces to inequality (4.5) when σ = 0, it suffices to

prove (4.6). From the definition of xk+1 and αk+1 in Step 4 of Algorithm 4 and Proposition

1.0.13, we have

∥xk+1 − x∥2 = ∥PC(xk − βlkαksk)− x∥2

≤ ∥xk − βlkαksk − x∥2 (4.7)

= ⟨xk − x− βlkαksk, xk − x− βlkαksk⟩

= ∥xk − x∥2 − 2βlkαk⟨sk, xk − x⟩+ (βlk)2(αk)
2∥sk∥2

= ∥xk − x∥2 + 2βαk+1⟨sk, x− xk⟩+ (βlk)2(αk)
2∥sk∥2.

Now, since we are assuming that f is a σ-strongly convex function, by Proposition 1.0.9,

we have ⟨sk, x− xk⟩ ≤ f(x)− f(xk)− (σ/2)∥xk − x∥2. Combining this information with

inequality (4.7) we obtain that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 + 2βαk+1⟨sk, x− xk⟩+ (βlk)2(αk)
2∥sk∥2

≤ ∥xk − x∥2 + 2βαk+1

(
f(x)− f(xk)− (σ/2)∥xk − x∥2

)
+ (βlk)2(αk)

2∥sk∥2

= ∥xk − x∥2 + 2βαk+1 (f(x)− f(xk))− σβαk+1∥xk − x∥2 + (βlk)2(αk)
2∥sk∥2,
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thus,

2βαk+1(f(xk)− f(x)) ≤ (1− σβαk+1)∥xk − x∥2 − ∥xk+1 − x∥2 + (βlk)2(αk)
2∥sk∥2,

or even,

2βαk+1(f(xk)− f(x)) ≤ (1− σβαk+1)∥xk − x∥2 − ∥xk+1 − x∥2 + β2α2
k+1∥sk∥2.

This proves inequality (4.6).

The next lemma shows a relationship between the sequences (αk)k∈N and (γk)k∈N. It

will be used to show an inequality that helps in proofs of convergence.

Lemma 4.1.3. The following inequality occurs:

αk ≥ min

{
α1, cβγk,

γk
(1 + ρ)L2

f,C

}
, ∀k ∈ N. (4.8)

Proof. For k = 1, it is clear that α1 ≥ min
{
α1, cβγ1,

γ1
(1+ρ)L2

f,C

}
. Suppose, by contradic-

tion, that there exists k ∈ N such that

αk+1 < min

{
α1, cβγk+1,

γk+1

(1 + ρ)L2
f,C

}
. (4.9)

As we are assuming that the sequence (γk)k∈N is non-increasing, by the definition of

αk+1 in Step 4 of the algorithm (4) and by the inequality (4.9), we have

βlk−1αk = αk+1 < min
{
α1, cβγk+1,

γk+1

(1 + ρ)L2
f,C

}
≤ min

{
cβγk,

γk
(1 + ρ)L2

f,C

}
, (4.10)

thus,

βlk−1αk ≤ cβγk. (4.11)

As a function f is Lf,C-Lipschitz continuous and the point xk ∈ C, by Proposition (1.0.13),

we have

f
(
PC(xk − βlk−1αksk)

)
− f(xk) ≤ Lf,C∥PC(xk − βlk−1αksk)− xk∥

≤ Lf,C∥xk − βlk−1αksk − xk∥

= Lf,Cβ
lk−1αk∥sk∥. (4.12)
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By Proposition 1.0.10, we have ∥sk∥ ≤ Lf,C. Thus, combining this inequality with in-

equality (4.12), we obtain

f
(
PC(xk − βlk−1αksk)

)
− f(xk) + ρβlk−1αk∥sk∥2 ≤ Lf,Cβ

lk−1αk∥sk∥+ ρβlk−1αk∥sk∥2

≤ L2
f,Cβ

lk−1αk + ρβlk−1αkL
2
f,C

= L2
f,C
(
βlk−1αk + ρβlk−1αk

)
= L2

f,C
(
βlk−1αk

)
(1 + ρ) . (4.13)

Using inequality (4.10), we have

βlk−1αk <
γk

(1 + ρ)L2
f,C

,

which, combined with inequality (4.13) gives us

f
(
PC(xk − βlk−1αksk)

)
− f(xk) + ρβlk−1αk∥sk∥2 ≤ L2

f,C
(
βlk−1αk

)
(1 + ρ)

< L2
f,C

(
γk

(1 + ρ)L2
f,C

)
(1 + ρ)

= γk,

thus,

f
(
PC(xk − βlk−1αksk)

)
< f(xk)− ρβlk−1αk∥sk∥2 + γk. (4.14)

We conclude that inequalities (4.11) and (4.14) hold true, which contradicts the definition

of lk, since in this case, lk − 1 satisfies both inequalities in (4.2). Therefore, inequality

(4.8) holds for all k.

Remark 4.1.2. The choice of α1 is crucial for the method’s performance. In Ferreira

et al. [8], there is no theoretically founded criterion for choosing α1 in the context of line

search methods. In cases where we know the constant Lf,C, a conservative choice is given

by

α1 = min

{
cβγ1,

γ1
(1 + ρ)L2

f,C

}
.

because in this case, it follows from the Lemma 4.1.3 that the line search condition is

already satisfied with l1 = 0.

In the next lemma, we will prove important inequalities that will be used in the

convergence proofs of the sequence (xk)k∈N. To do so, we will combine the inequalities

(4.3) with Lemmas 4.1.2 and 4.1.3, and define the following positive constants for ρ > 1/2:

Θ := min

{
α1

γ1
, cβ,

1

(1 + ρ)L2
f,C

}
, Γ := Θ

(
2β − β

ρ

)
. (4.15)
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Lemma 4.1.4. Suppose Ω∗ ̸= ∅. Let (xk)k∈N be the sequence generated by Algorithm 4

and let x∗ ∈ Ω∗. Then, the following inequality holds:

Γγk+1(f(xk)− f ∗) ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + 1

ρ
βcγ2

k, ∀k ∈ N. (4.16)

Additionally, if f is a σ-strongly convex function, we have:

Γγk+1(f(xk)− f ∗) ≤ (1−σβΘγk+1)∥xk −x∗∥2−∥xk+1−x∗∥2+ 1

ρ
βcγ2

k, ∀k ∈ N. (4.17)

Proof. Since the inequality (4.17) becomes the inequality (4.6) when σ = 0, then it is

sufficient to prove the inequality (4.17). By Lemma 4.1.1, we have

βαk+1∥sk∥2 ≤
f(xk)− f(xk+1) + γk

ρ
.

On the other hand, taking x∗ in the inequality (4.6) of the Lemma 4.1.2, we obtain

that

2βαk+1(f(xk)− f ∗) ≤ (1− σβαk+1)∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + β2α2
k+1∥sk∥2.

Now, let’s see that

β2α2
k+1∥sk∥2 = βαk+1βαk+1∥sk∥2

≤ βαk+1

(
f(xk)− f(xk+1) + γk

ρ

)
= βαk+1

(
f(xk)− f(xk+1)

ρ
+

γk
ρ

)
= βαk+1

(
f(xk)− f(xk+1)

ρ

)
+

βαk+1γk
ρ

≤ βαk+1

(
f(xk)− f ∗

ρ

)
+

1

ρ
βαk+1γk,

thus,

2βαk+1(f(xk)− f ∗) ≤ (1− σβαk+1)∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + β2α2
k+1∥sk∥2

≤ (1− σβαk+1)∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + βαk+1

(
f(xk)− f ∗

ρ

)
+

+
1

ρ
βαk+1γk,

therefore,(
2β− β

ρ

)
αk+1(f(xk)− f ∗) ≤ (1−σβαk+1)∥xk−x∗∥2−∥xk+1−x∗∥2+ 1

ρ
βαk+1γk. (4.18)
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On the other hand, using the Lemma 4.1.3, considering that (γk)k∈N is a non-increasing

sequence, and using the first equality in (4.15), we have

αk+1 ≥ min

{
α1, cβγk+1,

γk+1

(1 + ρ)L2
f,C

}

= min

{
α1

γk+1

, cβ,
1

(1 + ρ)L2
f,C

}
γk+1

≥ min

{
α1

γ1
, cβ,

1

(1 + ρ)L2
f,C

}
γk+1

= Θγk+1. (4.19)

Furthermore, by Lemma 4.1.1 we have αk+1 ≤ cγk, which combined with (4.18) e

(4.19) guarantees what(
2β − β

ρ

)
Θγk+1(f(xk)− f ∗) ≤ (1− σβΘγk+1)∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + 1

ρ
βcγ2

k,

therefore,

Γγk+1(f(xk)− f ∗) ≤ (1− σβΘγk+1)∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + 1

ρ
βcγ2

k.

Remark 4.1.3. Comparing the inequalities (4.5) and (4.6) with the inequalities (4.16)

and (4.17) respectively, we conclude that the inequalities (4.16) and (4.17) transfer, to

the sequence (γk)k∈N of non-monotonicity, classical conditions that are imposed for the

step size sequence that control the behavior of the sequence (xk) generated by the classic

subgradient method, as we saw in chapter 3. The algorithm 4 uses adaptive step sizes,

which are obtained over the course of iterations. In the classic case, the step sizes were

pre-fixed. Furthermore, for each sequence (γk) that we choose, from the Lemma 4.1.1

we obtain that αk+1 ≤ cγk, for all k; and in the inequality (4.19) in the Lemma 4.1.4,

we obtain that αk+1 ≥ Θγk+1, for all k. Combining this information, we have that the

Algorithm 4 chooses, using a non-monotone line search, the step size αk satisfying

Θγk+1 ≤ αk+1 ≤ cγk, ∀k ∈ N.

Thus, the method allows different choices for the sequence (γk) that controls non-monotonicity.
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4.2 Convergence analysis

For the convergence analysis, we will analyze the behavior of the sequence (xk)k∈N under

the hypotheses (H1), (H2) and two additional hypotheses. Additional hypotheses will be

used separately and only when explicitly stated. The new hypotheses are:

(H3) The sequence of non-monotonicity parameters (γk)k∈N satisfies

lim
N→+∞

∑N
k=1 γ

2
k∑N

k=1 γk+1

= 0.

(H4) The sequence of non-monotonicity parameters (γk)k∈N satisfies

lim
N→+∞

∑N
k=1 γ

2
k

NγN+1

= 0.

Hypotheses are made about the behavior of the sequence (γk)k∈N and with them we

obtain the following convergence results.

Theorem 4.2.1. Assume that Ω∗ ̸= ∅. Let (xk)k∈N be generated by Algorithm 4 with

ρ > 1/2 and x∗ ∈ Ω∗. Then, for each fixed N ∈ N, the following inequality hold:

min
{
f(xk)− f ∗ : k = 1, . . . , N

}
≤ 1

Γ

(
∥x1 − x∗∥2 + βρ−1c

N∑
k=1

γ2
k

) 1∑N
k=1 γk+1

. (4.20)

Consequently, if (H3) holds, then limN→+∞ min
{
f(xk)− f ∗ : k = 1, . . . , N

}
= 0.

Proof. Let k ≤ N . By the inequality (4.16) in Lemma 4.1.4, we have

Γγk+1(f(xk)− f ∗) ≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + 1

ρ
βcγ2

k.

Thus,

N∑
k=1

Γγk+1(f(xk)− f ∗) ≤
N∑
k=1

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + 1

ρ
βcγ2

k

)

= ∥x1 − x∗∥2 − ∥xk+1 − x∗∥2 +
N∑
k=1

1

ρ
βcγ2

k

≤ ∥x1 − x∗∥2 +
N∑
k=1

1

ρ
βcγ2

k. (4.21)

On the other hand,

N∑
k=1

Γγk+1(f(xk)− f ∗) ≥ Γ min
k=1,...,N

{
f(xk)− f ∗} N∑

k=1

γk+1. (4.22)



Chapter 4. Subgradient method with non-monotone line search 47

Combining the inequalities (4.21) and (4.22), we obtain that

Γ min
k=1,...,N

{
f(xk)− f ∗} N∑

k=1

γk+1 ≤ ∥x1 − x∗∥2 +
N∑
k=1

1

ρ
βcγ2

k,

therefore,

min
k=1,...,N

{
f(xk)− f ∗} ≤ 1

Γ

(
∥x1 − x∗∥2 + 1

ρ
βc

N∑
k=1

γ2
k

) 1∑N
k=1 γk+1

,

and this proves (4.20). Now, assuming that (H3) is valid and using (4.20), we have

min
k=1,...,N

{
f(xk)− f ∗} ≤ ∥x1 − x∗∥2

Γ
∑N

k=1 γk+1

+

1
ρ
βc
∑N

k=1 γ
2
k

Γ
∑N

k=1 γk+1

,

and how (H3) implies that limN→∞
1∑N

k=1 γk+1
= 0, we concluded that

lim
N→∞

min
k=1,...,N

{
f(xk)− f ∗} = 0.

The Theorem 4.2.1 provides an inequality that together with hypothesis (H3) guar-

antees that the sequence min
{
f(xk) : k = 1, . . . , N

}
converges to f ∗, provided that

Ω∗ ̸= ∅. This means that convergence information is obtained on the functional values.

If we assume that the sequence (γk)k∈N satisfies the following hypotheses:

(H5)
∑+∞

k=1 γ
2
k < +∞,

(H6)
∑+∞

k=1 γk = +∞,

then the next theorem ensures that the sequence (xk)k∈N converges to the solution of the

Problem (4.1) when the set Ω∗ ̸= ∅.

Remark 4.2.1. If (γk)k∈N satisfies (H5) and (H6), then (γk)k∈N also satisfies (H3). The

sequence (γk)k∈N with γk = 1/k satisfies (H5) and (H6).

Theorem 4.2.2. Let (xk)k∈N be generated by Algorithm 4 with ρ > 1/2. Assume that

(H5) holds. If Ω∗ ̸= ∅, then (xk)k∈N is bounded. Moreover, if (H6) hold, then (xk)k∈N

converges to a solution of Problem (4.1).

Proof. Let x ∈ Ω∗. By inequality (4.16) in Lemma 4.1.4, for every k, we have

Γγk+1(f(xk)− f ∗) ≤ ∥xk − x∥2 − ∥xk+1 − x∥2 + 1

ρ
βcγ2

k,
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that is,

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − Γγk+1(f(xk)− f ∗) +
1

ρ
βcγ2

k.

As x ∈ Ω∗, we have f(xk)− f ∗ ≥ 0 for all k. Therefore,

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − Γγk+1(f(xk)− f ∗) +
1

ρ
βcγ2

k

≤ ∥xk − x∥2 + 1

ρ
βcγ2

k,

that is,

∥xk+1 − x∥2 ≤ ∥xk − x∥2 + 1

ρ
βcγ2

k, ∀k ∈ N.

Since x ∈ Ω∗ is arbitrary, and by (H5) the sequence
(

1
ρ
βcγ2

k

)
k∈N

is summable, then by

the last inequality and Definition 1.0.9, we conclude that the sequence (xk)k∈N is quasi-

Féjer convergent to the set Ω∗. Since Ω∗ ̸= ∅, by item (i) of Proposition 1.0.14, we have

that the sequence (xk)k∈N is bounded. This proves the first assertion.

Now, let us define a subsequence (xkN )N∈N of (xk)k∈N such that

f(xkN )− f ∗ := min
k=1,...,N

{
f(xk)− f ∗}, N ∈ N.

Since the sequence (xk)k∈N is bounded, then the subsequence (xkN )N∈N is also bounded.

By the Bolzano-Weierstrass Theorem, there is a subsequence of (xkN )N∈N that is conver-

gent, therefore, without loss of generality we will assume that the sequence (xkN )N∈N is

convergent and consider that limN→∞ xkN = x̄. As we are assuming that (H5) and (H6)

are valid, then (H3) and (H6) are valid, therefore, using the Theorem 4.2.1 we obtain

limN→+∞(f(xkN ) − f ∗) = 0, that is, limN→+∞ f(xkN ) = f ∗. Since the function f is

continuous and limN→∞ xkN = x̄, we have f(x̄) = f ∗, therefore x̄ ∈ Ω∗. Again, as the

sequence (xk)k∈N is quasi-Féjer, through item (ii) of the Proposition 1.0.14 we conclude

that the sequence (xk)k∈N converges to x̄.
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Conclusion

In this work, we conducted a study of the classical gradient and subgradient methods,

as well as a subgradient method with a non-monotone line search for Lipschitz convex

functions. The gradient method, being a descent method, utilizes step sizes chosen via

exact and inexact line search. In contrast, the subgradient method is not necessarily a

descent method and employs pre-determined step sizes, which are not selected through

line search. The subgradient method with a non-monotone line search adaptively chooses

steps through a non-monotone line search mechanism similar to the Armijo rule.

In the gradient method, we studied convergence results in the following cases: when

the function is differentiable and has a Lipschitz-continuous gradient; when the function

is differentiable and has a continuous gradient; and when the function is convex, differ-

entiable, and has a continuous gradient. In the first two cases, we concluded that if the

sequence generated by the method has cluster points, then these are critical points of the

problem. In the last case, when we add the hypothesis of convexity, we ensure that if the

solution set is non-empty, the sequence generated by the method converges to the solution

of the problem.

In the subgradient method, we studied convergence results for the following step size

choices in the convex case: constant step size, constant step length, square summable but

not summable, nonsummable diminishing, and nonsummable diminishing step lengths.

We concluded that in the cases of constant step size and constant step length rules, fk
best

converges to an interval ”close” to the solution f(x̄). In the cases of square summable but

not summable, nonsummable diminishing, and nonsummable diminishing step lengths

rules, we ensure that fk
best converges to the solution f(x̄).

49
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In the subgradient method with non-monotone line search, we study convergence re-

sults under hypotheses in the non-monotonicity sequence that are similar to the hypothe-

ses made in the classical subgradient case. We conclude that under the hypothesis (H3)

mink=1,...,N

{
f(xk)

}
converges to the solution f ∗ and under the hypotheses (H5) and (H6)

the sequence (xk)k∈N converges to a solution to the problem.

As future work, we will consider the quasiconvex and Lipschitz case. In Cruz Neto

et al. [6], the authors consider the subgradient method with square summable but not

summable step sizes and the Armijo search for continuously differentiable, quasiconvex,

and Lipschitz functions. To this end, the Plastria subdifferential is considered. It is

defined as follows:

∂Pf(x) = {v ∈ Rn : f(y) < f(x) =⇒ ⟨v, y − x⟩ ≤ f(y)− f(x)} .

The reason is that if f : Rn → R is a quasiconvex, differentiable and Lipschitz function

(with Lipschitz constant L), x0 ∈ Rn is such that ∇f(x0) ̸= 0, then

g :=
L∇f(x0)

||∇f(x0)||
∈ ∂Pf(x0);

see [6, Corollary 6]. Note that the subdifferential in the convex context is a particular

case of the Plastria subdifferential, i.e., ∂f(x) ⊂ ∂Pf(x). In this sense, the work of Cruz

Neto et al. [6], can be seen as a generalization of the classical subgradient method to the

quasiconvex context.

Since Ferreira et al. [8] demonstrated that computationally, in the convex case, the

subgradient method with non-monotone line search is more efficient than classical step

sizes, we intend to propose a non-monotone version of the subgradient method for quasi-

convex functions using the Plastria subdifferential, and thereby extending the results of

Ferreira et al. [8] and obtaining a more efficient method than that proposed in Cruz Neto

et al. [6]

Recently, Lara et al. [13] studied the subgradient method with square summable but

not summable step sizes for strongly quasiconvex functions using the strong subdifferential

defined as follows: Let h : Rn → R be a function, β > 0, γ ≥ 0, and K ⊆ Rn. Then the

(β, γ,K)-strong subdifferential of h at x̄ ∈ K is given by

∂K
β,γh(x̄) :={ξ ∈ Rn : max{h(y), h(x̄)} ≥ h(x̄) +

λ

β
⟨ξ, y − x̄⟩

+
λ

2

(
γ − λ

β
− λγ

)
||y − x̄||2, ∀ y ∈ K, ∀λ ∈ [0, 1]}.
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Taking into account that if K ⊂ Rn is a closed and convex set, h : Rn → R lower

semicontinuous and strongly quasiconvex on K with modulus γ > 0 and β > 0, then

∂K
β,γh(x̄) ̸= ∅ for every x̄ ∈ K; see [12, Corollary 38(a)].

Using this approach, the authors removed the Lipschitz continuity hypothesis used

in Cruz Neto et al. [6]. In this context, we intend to propose a version of the subgra-

dient method for strongly quasiconvex functions with non-monotone line search, thereby

obtaining a computationally more efficient method than that proposed by Lara et al. [13].
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