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“And as we wind on down the road

Our shadows taller than our soul

There walks a lady we all know

Who shines white light and wants to show
How everything still turns to gold

And if you listen very hard

The tune will come to you, at last

When all are one and one s all, yeah

To be a rock and not to roll

And she’s buying a stairway to heaven.”

Stairway to heaven - by Heart.



Resumo

Neste trabalho, estudamos resultados de convergéncia dos métodos classicos do gradiente
e do subgradiente, além de uma variacao do método subgradiente com busca linear nao
mondtona para fungdes convexas Lipschitz. O método do gradiente é um método de de-
scida e os tamanhos de passo sao escolhidos de forma exata e inexata com busca linear.
O método subgradiente nao é necessariamente um método de descida e os tamanhos de
passo estudados sao pré-fixados, nao sendo escolhidos via busca linear. Assim, também
estudamos um método subgradiente com busca linear nao monétona que, apesar de nao
ser um método de descida, o possivel aumento nos valores da funcao é controlado e os

tamanhos de passo sao escolhidos de forma adaptativa.

Palavras-chave: Método do gradiente, método do subgradiente, método do subgradiente

nao-monétono, fungao convexa.



Abstract

In this work, we study convergence results of the classical gradient and subgradient meth-
ods, as well as a variation of the subgradient method with non-monotone line search for
convex Lipschitz functions. The gradient method is a descent method and step sizes are
chosen exactly and inexactly with line search. The subgradient method is not necessar-
ily a descent method and the step sizes studied are pre-fixed and are not chosen via line
search. Thus, we also studied a subgradient method with non-monotone line search which,
despite not being a descent method, the possible increase in function values is controlled

and step sizes are chosen adaptively.

Keywords: Gradient method, subgradient method, non-monotone subgradient method,

convex function.
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Introduction

In this work, we study the subgradient method with non-monotone line search for Lipschitz
convex functions proposed in [§. The method performs a line search similar to the
Armijo line search commonly used in the differentiable context. Additionally, we provide
a brief study of classical gradient and subgradient methods along with their respective
characteristics.

The gradient method, also known as the Cauchy method, is one of the oldest and most
well-known strategies for minimizing a multivariable function. Its theoretical simplicity
makes it particularly applicable to high-dimensional problems. However, computationally,
the gradient method can exhibit a “zig-zag” behavior, resulting in slower convergence.
Nevertheless, it serves as a fundamental basis for the development and refinement of more
efficient methods.

The gradient method in each iteration moves in the direction opposite to the gradient
vector, with a certain step size to ensure the descent algorithm. The proper choice of step
size plays a crucial role in the method’s effectiveness. Common approaches include the
fixed step size, the one-dimensional minimization rule (exact line search), and the Armijo
rule (inexact line search). Here are some basic references on the gradient method and its
convergence properties: [2 [3, [IT] 5] 17, [18].

The subgradient method for solving nondifferentiable convex optimization problems
was developed in the 1960s, as evidenced by [7, 21]. In each iteration, a step is taken in
the direction opposite to a subgradient. It is not necessarily a descent method because
the direction opposite to a subgradient may not be a descent direction.

In the classical case, the sequence of step sizes is predetermined before the algorithm
starts, and the step sizes are not chosen via line search. Five typical choices are considered,
where the sequence of step sizes is either constant or tends to zero at a sublinear rate: con-

stant step size, constant step length, square summable but not summable, nonsummable
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diminishing, and nonsummable diminishing step lengths. Here are some fundamental
references on the subgradient method and its convergence properties: [2), 1Tl [16, 19} 2T].

The subgradient method proposed in [8] for minimizing Lipschitz convex functions
includes a line search performed in the direction opposite to a subgradient. This search
allows the function to increase over iterations, but the increase is controlled by a sequence
(of nonmonotonicity) of nonincreasing parameters. The method utilizes this nonmonotone
search to determine the step size, implying that this variant of the subgradient method
has adaptive step sizes. Furthermore, since the search depends on the nonmonotonicity
sequence, the step size is implicitly controlled by it.

This work is structured as follows: In Chapter [T, we present some notations, defini-
tions, and results from optimization theory that will be used throughout the work. In
Chapter |2, we study descent methods and some common line search techniques in the dif-
ferentiable case. We introduce the gradient method and convergence results under certain
assumptions on the function , its gradient, and choices of search rules. In Chapter (3, we
highlight the differences that arise in the study of convex optimization when moving from
the differentiable to the nondifferentiable context. We present the subgradient method,
step size rules, classical inequalities, and convergence results. In Chapter [d, we introduce
the algorithm ”subgrad projection method with non-monotone line search”, study some
inequalities, and present convergence results of the method under assumptions on the

nonmonotonicity sequence.



Chapter 1

Preliminaries

In this chapter, we present some notations, definitions, and results in optimization theory
that will be used throughout the work, which can be found in [I, 5l 10} 1T, 22].
Let D C R™ and 2 C R™ such that D C €2, and let f : 2 — R be a function. Consider

the problem of minimizing f over the set D, that is,
min  f(x)

st. xze€D.

(1.1)

The set D is referred to as the feasible set of the problem, the points in D are called

feasible points, and f is referred to as the objective function.

Definition 1.0.1. We say that a point & € D 1is
1. a global minimizer of iof
f(z) < f(x), Vze€ D,
2. a local minimizer of if there exists a neighborhood U of T such that

f(z) < f(z), YzeDNU.

Proposition 1.0.1. Suppose the function f : R™ — R s differentiable at the point T. If

T 1is an unconstrained local minimizer of f, then
Vi) =0.

Definition 1.0.2. A function f : R™ — R us L c-Lipschitz continuous on C C R" if there
ezist a constant Lyc > 0 such that |f(z)— f(y)| < Lycllx—yl|, for allz,y € C. Whenever
C =R" we set Ly = Lygn.
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Proposition 1.0.2. Let f : R® — R be a differentiable function on R™, with Lipschitz

continuous gradient in R™ with constant L > 0. Then,
£+ )~ £@) = (Vi@ < ool Vay R
Definition 1.0.3. A set A C R" is said to be convex if, for every x,y € A we have
A+ (1-XNyeAd, Vixelol].

Proposition 1.0.3. Let f : R™ — R be a continuously differentiable function on a convex

and open set Q C R™. Then, for every x,y € Q) there exists t € [0, 1] such that

fly) = f(z) =(Vf(te + (1 = t)y),y — z).

Definition 1.0.4. A function f : A C R" — R is said to be convex if A is conver and

for every x,y € A, the inequality holds:
FQz+ (1 =Ny) <Af(x)+ (1 =Nf(y), vAel0,1].

Proposition 1.0.4. Let Q C R"™ be a convex and open set, and f : Q0 — R a differentiable

function on Q. If f is convex on §Q, then for every x,y € ), we have

fy) > f(x) +(Vf(z),y — z).

Definition 1.0.5. Let f : R® — R be a convexr function. We say that y € R" is a
subgradient of f at the point x € R™ of

f(z) = f(@) + (y,z —x), VzeR"
The set of all subgradients of f at x is called the subdifferential of f at x denoted by Of (z).

Proposition 1.0.5. Let f : R® — R be a convex function. Then for every x € R", the

set Of (x) is convex, compact, and non-empty. Moreover, for every d € R"™, we have

f(x;d) = max{(y,d) | y € Of(x)}.

Proposition 1.0.6. A convez function f : R™ — R is differentiable at the point v € R"
if and only if the set Of(x) contains exactly one element. In this case, Of (x) = {V f(x)}.

Definition 1.0.6. Let D C R" be a convex set and * € D. The normal cone at the point

T with respect to the set D 1is defined as

Nop(z)={deR" | (d,z — %) <0, Vze D).
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Proposition 1.0.7. Let f : R® — R be a convexr function and D C R™ a convex set.

Then T € R™ is a minimizer of f on D if and only if
Jy e df(x) such that (y,x —z) >0, Vze D,

or equivalently,

0€df(x)+ Np(z).

In particular, T is a minimizer of f in R™ if and only if
0 € 0f(z).

Proposition 1.0.8. Let f : R" — R be a convex function. Then the set where the

function f is not differentiable has Lebesgue measure zero.

Definition 1.0.7. A function f: R" — R is said to be o-strongly conver with modulus
o2 0if flra+ (1 =7)y) <7f(x) + (1 =7)f(y) = §7(1 = 7)[lz = y[|*, for all z,y € R"
and T € [0,1].

Proposition 1.0.9. The function f : R™ — R is o-strongly convex with modulus o > 0 if
and only if f(y) > f(z)+ (v,y —z) + (6/2)|ly — z||?, for all z,y € R™ and all v € Of (z).

Proposition 1.0.10. Let f : R" — R be a convex. Then, for all x € R™ the set Of(x) is
a non-empty, convex, compact subset of R". In addition, f is Lyc-Lipschitz function on

C C R” if and only if ||v|| < Lye for allv € f(x) and x € C.

Definition 1.0.8. Let C C R"™ be a non-empty, closed and convex set. The projection
map, denoted by Pe : R" = C, is defined as follows Pe(y) := argmin{||y — z|| : z € C}.

Proposition 1.0.11. Let D C R" be a non-empty, conver and closed set. Then for every
x € R™, the projection of x onto D, Pp(x), exists and is unique.

Furthermore, & = Pp(x) if and only if
zeD, (r—z,y—x)<0, VyeD,

or equivalently,

reD, x—xeNpa).
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Proposition 1.0.12. Le D C R" be a non-empty, convex and closed set. Then, for any

x € R" and y € R", we have

(Pp(x) = Pp(y),z —y) = |[Pp(x) — Po(y)|]* = 0,

and

1Po(x) = Po)ll < |z —yll.

In particular, Pp(-) is continuous on R™.
Proposition 1.0.13. Let y € R" and z € C. Then, we have ||Pe(y) — z||> < ||y — z||>.

Definition 1.0.9. Let S be a nonempty subset of R*. A sequence (v¥)reny C R™ is said
to be quasi-Fejér convergent to S, if and only if, for all v € S there exists k > 0 and a

summable sequence (e )pen, such that [[vF+ — |2 < ||o* — 0|2 + e for all k > k.

Proposition 1.0.14. Let (v*)pen be quasi-Fejér convergent to S. Then, the following

conditions hold:
(i) the sequence (V*)ren is bounded;

(ii) if a cluster point v of (v*)ren belongs to S, then (v¥)ren converges to v.



Chapter 2

Gradient method

The chapter will be divided into two sections. In the first section, we will present the
idea of descent methods and line search techniques, which are natural in the differentiable
case. The main results are the descent lemma and the rules for line search. We will use
the descent lemma as a criterion for choosing a descent direction and the rules for line
search as a criterion for choosing the step size. In the second section, we will present
the gradient method, which is a descent method and in each iteration performs a search
in the direction opposite to the gradient vector. The main results are the convergence
theorems, under certain assumptions on the function f, its gradient f and the choice of
search rules.

The functions considered are once or twice differentiable.

The construction of the first and second sections were based on references [2], [3], [11],

5], [I7], [I8], [201.

2.1 Descent methods. Line search.

Consider a function f : R” — R and the unconstrained minization problem

min  f(x)

s.t. x€R™

(2.1)

An idea to solve this problem is as follows: Starting from a point ¥ € R, we want

to find a new point ¢! € R™ such that

F@™h) < f(ah).

7
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This new point can be obtained, from the point z*, taking a direction d* € R" ac-
cording to which f decreases, at least for steps sufficiently small, and choosing a step size
tr > 0 such that

f(@" 4+ tpd") < f(2P).

Thus, we take 2**!1 := 2* +¢,d* and repeat the procedure for the new point obtained.
In this way, we construct a sequence {z*} with the property that f(x**1) < f(z*), for
each k =0,1,2,.... Methods that use this idea are called descent methods.

k+1 there are no instructions on how to

In the idea about how to obtain the point x
choose a descent direction d* and a step size t;. In general, there are several possible

descent directions and step size to take.

Definition 2.1.1. We say that d € R" is a descent direction of the function f:R"™ — R

at the point x € R" if there exists € > 0 such that
flz+td) < f(x) Vte (0,¢].
We denote by Dy(x) the set of all descent directions of the function f at the point x.

Of course, Df(x) can be empty, for example, if = is a minimizer of the Problem ;
and it is clear that Dy(x) U {0} is a cone, since if d € Dy(z), for all ¢ > 0 we have that
td € Dy(x) and if ¢ = 0 then td € {0}.

From this definition, we mathematically formalize the meaning of d € R" being a
direction according to which f decreases, at least for sufficiently short steps. In other
words: to show, by definition, that d is a descent direction, we have to guarantee that
there exists ¢ > 0 such that for all values of ¢ € (0,¢], the inequality f(z + td) < f(z) is
true.

If we add the hypothesis that f is differentiable at the point z, then it is possible to
obtain a more practical characterization for deciding whether d is a descent direction of

f at the point z.
Lemma 2.1.1. Consider f : R™ — R a differentiable function at the point x € R™. Then:
a) For all d € Dy(x), we have (V f(z),d) <O0.

b) If d € R™ satisfies (Vf(z),d) <0 then d € Dy(x).
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Proof. Let d € Dy(x). Then there exists ¢ > 0 such that f(z+td) < f(x), for allt € (0, ¢].
Since f is differentiable at the point z, for all t > 0, f(z+td) = f(z)+(V f(x),td) + o(t),
with im0, %2 = 0. So,

0> flo+td) — flz) =t <(Vf(x),d> + @) , Vte (0]

Dividing both sides of the above inequality by ¢ > 0 and taking the limit as t — 0,
we obtain that 0 > (V f(z), d), which shows item (a).
Now suppose that (Vf(x),d) < 0. Again, since f is differentiable at the point z, for

t > 0, we have

ot - f(a) =t (V@0 + A ),

with limy_o, @ = 0. As limy_o, @ =0and 0 < —%(Vf(x),d), then there exists a

such that if £ € (0,6) we have that

A < Lvre).a
Thus,
1))+ 2 < (T f@).d) ~ LV F). 0
= Vi),
< 0.
Therefore,
o+t~ o) =t (@ f).d) + °7)
<t (5vs6.0))
<0, Vie(0,9),
that is, d € D;(x), which shows part (b). 0

In the differentiable context, the lemma above is a tool to choose d as a direction
of descent of f at the point x, for example, we can prove that, if Vf(x) # 0 , then
—Vf(z) € Dy(x). In fact, taking d = —V f(z) we have that

(Vf(@),d) = (Vf(z),-V[(z)) = IV f(2)]* <O0.
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V()

Figure 2.1: Illustration of item b) of the Lemma [2.1.1]

The Lemma shows that, for d* € R™ to be a descent direction, it is sufficient that
(Vf(x),d*) <0, see Figure . Then let us consider the following descent algorithm to
solve the Problem ({2.1)).

Algorithm 1 Descent algorithm
1: Choose z° € R" and set k := 0;

2: while ||V f(z")|| # 0 do
3: Choose d* € R™ such that (V f(x*), d*) < 0;
4: Choose t,, > 0 such that f(z* + tpd¥) < f(2*);

5: Set 2+ := 2% + ¢,.d* and update k :=k + 1;

6: end while

Since V f(2*) # 0, we have already seen that it is possible to perform step 3. The
Lemma m guarantees that the direction d* chosen belongs to the set Dy(z*), which
means, by the very definition of D;(z¥) , that it is possible to take ¢, > 0 such that
f(a® + t,.d*) < f(2%), therefore it is possible to execute the step 4. As we already have
the point 2* and we have already chosen d* and t;, it is possible to define z**! with the
desired descent property and update the value of k£ to perform the procedure for the new
point **! obtained, that is, it is possible to execute step 5.

By the structure of Algorithm [I} we either find a critical point after a finite number
of iterations or generate a sequence {z*} such that the sequence {f(z*)} is decreasing.

Let {z*} be a sequence generated by the Algorithm . The next examples show that
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{2*} can have cluster points that are not critical points of the Problem . Furthermore,
they show that the choice of step size t; influences the convergence of the sequence {z*}.
If the step size is too small, the sequence {z*} may converge to a point that is not
critical and if the step size is too large, the sequence {z*} may not converge and generate

non-critical cluster points.

Example 2.1.1. Let f : R — R be given by f(z) = 2%. Clearly, f has a critical
point (global minimum) at * = 0. Note that d = —1 € Dy(x), for every x > 0 and
d=1¢€ Dy(x), for every x < 0. We run Algom'thmfor different starting points with

1 3
the stepsize ty, = By and t, = 2+ SRt with the stop rule while k < 500.

Figure 2.2: Algorithm |1| for Example with t, = 2kl+1.

4
35 35 s 35 _—
. ¥
The B /
3 3 S 3 e
S -
~ -
=

25 25 \\ 255 =
= 2 =~ 2 > 2 S

1 .-

\ e
A N D 4 —————
N\

05 05 05

0 0 0

2 5 05 0 05 52 2 45 4 05 0 05 1 15 2 2 5 05 0o 05 15 2

x
0 _ b 0 _ 5 0 _—
(a) 2 = -2 ¥ =1 c)a’ =2

Figure 2.3: Algorithm [1| for Example with ¢, =2 + Qk%

In the Figure since we chose t;, = Qk% then ¢, converges to 0 when k goes to
infinity. For example, when k = 50, t50 = zar = 4.4409¢7'6; when k = 200, to00 =
o = 3.1115e7%%; when k = 500, t500 = gsoorr = 1.5275¢~ %, This shows that over the
first few iterations the step size becomes so small that the sequence {z;} converges on a

point that is not critical.
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In Figure since we chose t;, = 2 + Qk% then t; converges to 2 when k goes to
infinity. For example, when k = 50, t50 = 2 + 57 = 2 4 1.3323¢%; when k& = 200,
taoo = 2+ smmerr = 2+ 9.3345e %15 when k = 500, t500 = 2+ grer = 2+ 4.5824e 715!, This
shows that during the first few iterations the step size is already close to 2. Since 2 is a
large step size, the sequence {z}} skips the critical point and generates two cluster points
that are not critical.

A good choice of step size t; consists of preventing the step length from being too
small or too large, and balancing this with the decrease promoted in the function f.

Given a function f : R®™ — R, a point z* and a direction d* € Dy(z¥), a natural
strategy is to search for a suitable ¢; along the half-line 2% + td*, t > 0.

Line search. The step size is calculated by observing the behavior of the function f
along the half-line 2% 4 td*, ¢ > 0, or along a limited interval in the same direction.

Among the line search rules, we will look at the one-dimensional minimization rule
(exact search), Armijo rule (inexact search) and the fixed step size rule. Let us fix 2% € R”
and d* € Dy(z").

One-dimensional minimization rule. The strategy is to minimize the objective

function on the half-line 2% + td*, t > 0. The step size t; is given by the condition
f(@F +t,d") = min f(@F +tdh),

ie,

ty = argrgi(r)l f(@" +td"). (2.2)

Since we chose d* € Dy(x¥), there exists € > 0 such that f(z* + td¥) < f(a*) for all
t € (0,¢]. By the structure of the rule, this ¢; is the “best” possible in the sense that for
all t >0, f(2F + t,d%) < f(a* + td¥).

An advantage of using the one-dimensional minimization rule is that, in each iteration
of the method, we choose the “best” t, possible, i.e. the t; that decreases the function f
the most along the corresponding half-line. One disadvantage is that, in each iteration, it
is necessary to solve a one-dimensional minimization Subproblem in order to choose

the value of ¢;.

Remark 2.1.1. By relation , we have that t, = argmingsg p(t), where @ : Ry —
R, pi(t) = f(aF+td"). Since d* € Dy(z*) then f(z*+t,d¥) < f(xF+0d¥), this guarantees
us that t;, > 0. In this case, if the function f is differentiable at the point x*T', by the
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Proposition we have that
0= @y (ts) = (Vf(zF + t,d¥), d*)y = (Vf(zF), d¥). (2.3)

See the Figure[2.1] below

Vi)

Figure 2.4: Illustration of the property

Armijo rule. The idea is to find a step size «a;, that provides a reasonable decrease
in the function f, without trying to minimize it. Suppose that f is differentiable at the

point z*. We fix the parameters & > 0, o, 6 € (0,1). We take o := a.

1. We check whether the inequality
fa® 4+ ad) < f(2®) + oa(V f(2*), d*) (2.4)
whether it satisfies or not.

2. If (2.4) is not satisfied, we take a := v and return to Step 1.

Otherwise, we accept ap = « as the step size value.

By constructing Armijo rule, oy, is the largest among all numbers of the form aé’,
i=0,1,2, ..., which satisfies the inequality ([2.4)).

Since f is differentiable at point ¥, we have

fa* +ad®) — f(a*) = f(*) + a(Vf(2*),d*) = f(a¥)
= 04<Vf(.1'k), dk>>
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which gives us an interpretation for the number a(V f(z*), d*). It represents the estimate
of real decrease, given by the linear approximation of f at the point z*, for the step size
« in the direction d*. Therefore oca(V f(z*),d*), in the inequality (2.4)), is a fraction of
this estimate (determined by o € (0, 1)), then oy is chosen so that the actual decrease in

f is at least the fraction (determined by o € (0, 1)) of the foreseen.

-—_ o
0 l’;("y E ;“" ! : :'

¥+ ad®) — f(zh) i i

O(Vf(‘rk).dk) U(_t(Vf(IEkJ,dk)

Figure 2.5: Ilustration of the values of a that satisfy Armijo’s rule and their respective

images that satisfy the condition ([2.4]).

Step 1 of Armijo rule checks whether the parameter « provides a reasonable decrease
in the function f, in order to satisfy the inequality . If the parameter « satisfies ,
then we accept it as the step size value. Otherwise, we use the 6 parameter to reduce it
and go back to step 1 to check if the new « provides the desired decrease. See the Figure
211

The next lemma guarantees that Armijo rule is well defined and that this process ends

in a finite number of iterations.

Lemma 2.1.2. Let f : R® — R be a differentiable function at the point ¥ € R™. Suppose
that d* € R™ satisfies (Vf(x¥),d*) < 0. Then the inequality is satisfied for all
sufficiently small o > 0. In particular, Armijo rule is well defined and ends with a

ag > 0.

Proof. For all a > 0, as f is differentiable at the point 2¥ € R", we have that

fa" + ad®) = f(2") +(Vf(2*), ad") + o),
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with lim, 0, 4% = 0. Thus,
fa® +ad®) = f(a") = a(V f(2*),d") + o(a)
= ooV f(z"),d") + (1 — o)V f(2"),d") + o(a)
= ooV f(2"),d") +a ((1 — o}V f(zh),d") + @) .
Since lim, 0, 22 = 0 and 0 < —U2(Vf(2*),d*), there exists § > 0 such that if

a € (0,90),
O(CY) < _(1 — U) <Vf({lfk),dk>

o 2
Thus,
(1 - )W) ) + 2 < (10— v, ay - LD w0
= D95, ¢
<0, Yae/(0,9).
Therefore,

a4 ad) - f(a) = 0alV ), ) o (1= T F). )+ 222

o
< oa(Vf(z*),d"), Va e (0,0).

This shows that the inequality is satisfied for all sufficiently small a.

As 4f" — 0, when i — oo, there exists 7o € N U {0} such that if i > iy then &6" € (0, ),

that is, all these &f° satisfy inequality with the largest of them being &#%. Now it

remains to choose ay, as the largest of the numbers &6°, i = 0,1, ..., iy, which satisfies the

inequality . This shows that, in particular, Armijo rule is well defined and ends with

a oy > 0. ]

An advantage of using Armijo rule is that, in each iteration of the method, we choose
the step size aj without having to solve a one-dimensional minimization subproblem
and with the guarantee that o provides a reasonable decrease of the f function. A
disadvantage is that, for each k, as we need to check whether the inequality is
satisfied or not, it is necessary to evaluate the function f at the corresponding points and
calculate ca(V f(z*), d*), if evaluating the function f has a high computational cost, then
this can considerably increase the time to obtain the step «y .

The Lemma [2.1.2] guarantees that for every sufficiently small o, Armijo rule is well

defined. If we add the hypothesis that the gradient of the function f is Lipschitz, then
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for every k, it is possible to obtain a constant ¢ that guarantees that every o € (0, ay]

satisfies the inequality (2.4)).

Lemma 2.1.3. Let f : R® — R be a differentiable function on R™, with Lipschitz-
continuous gradient on R™ with constant L > 0.
If 2% d* € R™ satisfy (Vf(2¥),d*) < 0, then the inequality is valid for all

a € (0, ay|, where
(o — 1)V, &)
Li|d¥|J?

Proof. By the Proposition [1.0.2] for all a € R, we have that

> 0. (2.5)

h

7+ ad) = F4) — (Vf(a*), 0] < flad|”
Thus,
Fat +ad) — F(a*) < a9 (), ) + Zo? P
= (V7.0 + Gl 1)

Therefore, for all « € (0, ay],

ot ad) - 565 < o (197689, + Sl )
L2(0 — DV, d)
”( L ”dk”)
= o ((V (@), d + (o — 1)(V f(a*), @)
— ca(V (), d).

]

We use the Proposition in the Lemma to estimate f(z* 4+ ad*) — f(z")
by oV f(z*),d") + La?||d*||>. Note that if a(V f(z*),d") + La?||d"||* < ooV f(z*), d"),
then

LA < (6~ 1w sy,

thus,
_ 20— D(V ("),
- L||d*[]> ’

which gives an idea for choosing ay.

Under the hypotheses of the Lemma [2.1.3], if

(V ("), d")
122

<5 <0, (2.6)
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where 0 is a constant that does not depend on k and if the parameters &, ¢ and 6 are the

same for each iteration, multiplying the inequality (2.6) by (¢ — 1), we have that

(0 — 1)V f(a*), d")
1] ’

0<d(c—1)<

now multiplying the inequality by %,

0< 26(oc — 1) < 2(0 — 1)(Vf(mk),dk)’
L L[d*[>
that is, o
—20(1—0 2(0 — 1)(Vf(2"),d
o< o0l Ao UTIE.d)
which means,
O0<a<ag Vk, where a:= ﬁ > 0.

Therefore, the inequality (2.4]) is satisfied for all @ € (0,a@]. We know that «y is the
largest number of the form &f’, i = 0,1, 2, ..., which satisfies the inequality (2.4]). Since
step size value greater than aj was not accepted, then either ¢ = 0 (and in this case ay

ik
0

is the largest allowed value, i.e. a; = &) or i # 0 (and in this case G = = &b was

not accepted), thus

a
either ap=a& or f > @,
that is,

either ap =& or o > 6a.

therefore,

ar > min{a, fa} :=a >0, Vk.

Fixed step size rule. We fix a number ¢ > 0 that does not depend on k and take
t,, = t for all iterations.

An advantage of using the fixed step size rule is that it is the simplest rule among those
presented. On the other hand, this causes the rule to have major drawbacks, as prefixing
a step size value for all iterations causes “best” step lengths to be ignored. Furthermore,
if the size of fixed step is too large, this may result in the method not converging; and if
it is too small, then convergence may be very slow (considerably increasing the number

of method iterations).

Remark 2.1.2. Assuming that the hypotheses of the Lemma and the condition (@
hold, then Armijo inequality will hold for t, if t € (0,&]. In Armijo rule, defining
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~

& :=t, we obtain that oq =1, as =t, as = t, and so on. This shows that the convergence
of methods with sufficiently fixed step size small follows from the convergence of methods

using Armijo rule.

2.2 Gradient method

The three most important properties of the gradient of a differentiable function are as

follows: Given x € R™ such that V f(z) # 0, then

1. The gradient is a direction in which the function f is increasing.

2. Among all the directions along which the function f grows, the direction of the

gradient is the fastest growing.

3. The gradient of f at point x is perpendicular to the level surface of f that passes
through that point.

The above results are well known and can be found, for example, in [9] and [T4].

This motivates the definition of the gradient method to solve (2.1)), since —V f(x) is a
direction of descent of the function f at the point x and is the direction of decrease most
fast.

Suppose that the function f is differentiable in R™. In the context of descent methods,
the gradient method is, by definition,

"t =g —  Vf(2¥), k=0,1,2,..., (2.7)

that is, we take the direction of descent d* = —V f(z*), for all k. If V f(2*) = 0, for some
k, x* is a critical point of the Problem ({2.1)) and the method stops.

Algorithm 2 Gradient method
1: Choose 2" € R™ and set k := 0;

2: while ||V f(z")|| # 0 do
3: Choose d* = =V f(z¥);

4. Choose t; > 0 such that f(z* + t,d*) < f(z*), using one of the three search rules

presented (one-dimensional minimization rule, Armijo rule or fixed step size rule);
5: Set ¢! = aF 4 t,d*;
6: Update k :=k + 1;

7. end while
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The gradient method using one-dimensional minimization is called the maximum de-
scent method. Since we take d* = —V f(2¥) and use one-dimensional minimization, by
(2.3)), it follows that

(Vf("),Vf(z") =0, (2.8)

therefore, the directions used in subsequent iterations are orthogonal. Then, by (2.7)) and
(2.8)), see that for arbitrary k,

(M2 R g Ry (o (Y, — V()

= Oék+104k<vf(xk+1)7 Vf(xk»
=0,

therefore,

($k+2 o $k+1> L (karl o xk) (29)

This justifies and illustrates the fact that the method has a “zig-zag” trajectory
throughout the iterations. See the figure 2.2] below.

Figure 2.6: Illustration of property ([2.9).

Armijo inequality is given by

fa® =V f(a")) < f(a") — ooV f (") (2.10)
When V f(2%) # 0, we have

(Vf(@*),d*) _ (Vf(a*), -V (")

= — _1 < O,
1] =V f(2*)]|?
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in this case, the condition (2.6 is satisfied with 6 = —1 and the estimate ({2.5)) of longest

step is given by
2(1—-o0)
L

As ay, does not depend on k, when the gradient of the function f is Lipschitz continuous

= > 0. (2.11)

in R™ and the Armijo rule is being used, at least Lemma [2.1.3| and subsequent comments,
we have

ap > @ >0, (2.12)

where & does not depend on k.

Theorem 2.2.1. Let f : R® — R be a differentiable function on R™, with Lipschitz-
continuous gradient on R™ with module L > 0. In the case where the Algorithm[g uses a

() 14 . 2. l

Then, if a sequence {x*} generated by the Algorithm @ has a cluster point, or if the

function f is lower bound in R™, we have that
(V") =0 (k— o). (2.14)

In particular, each cluster point of any sequence {x*} generated by the Algorithm| is a
critical point of the Problem .

Proof. Let us first consider the case of Armijo rule. If Vf(z*) # 0 for all k, then the
sequence { f(z*)} is decreasing. Suppose that the sequence {z*} has a cluster point. Then
there is a subsequence {2%} — Z, when j — oco. Due to the continuity of f, we have
lim; o f(z%) = f(Z), therefore f(Z) is a cluster point of the sequence {f(z*)}. Since
{f(z*)} is monotone and has a bounded subsequence {f(z*/)}, then {f(x*)} is bounded
too. Thus, as {f(2*)} is monotone and bounded, {f(2*)} is convergent. If the function

f is lower bounded on R™, then {f(z*)} is convergent (even if {z*} does not have cluster

points). By the Armijo inequality (2.10) and (2.12)), for all k, we have
fa®) = (@) > ooy |V ()] > 0al|V f(z")]* > 0. (2.15)
Since limy, o f(2%) — f(2*1) = 0, we have limy_,, 0|V f(2¥)||> = 0. Therefore,

lim Vf(z¥) =0

k—00
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which guarantees (2.14)). In particular, if {2%} converges to 7, as the gradient of the
function f is continuous on R", it follows that

0= lim Vf(2") = Vf(z),

Jj—o0

that is, Z is a critical point of the Problem (2.1)).
Let us now consider the case of the one-dimensional minimization rule. For all k, let

k+1

us denote by "7 the point that would be obtained by Armijo rule, with a; being the

k+1

associated step size. By the definition of ", we have

F@) = f@™) = f@") = f@E) 2 0ai|VF@)* = oa||V f(8)]* > 0.

Thus, the result follows from the previous analysis by replacing «; with ay.

Now considering the case of the fixed step size rule, we take aj = t for all iterations.
By hypothesis, , we are assuming that ¢ < % In the gradient method, we saw that
the longest step estimate is given by the condition , as we take oy =1 < %, for o

sufficiently small, we have

~ 2 2
an = ‘l-0¢ v
k t<[( )<[a k,

that is, the choice of step size belongs to the set (0, ], Vk. This shows that if t < %
and we do & := f in Armijo rule, with ¢ small enough, using the fixed step size rule is
equivalent to using Armijo rule where in each iteration the inequality is already true
for aw = ¢. Therefore, the result follows from the analysis made in the case of the Armijo

Rule. O

In the proof of the Theorem particularly in the inequality , the importance
of the step size a; not tending to 0 becomes evident. It is possible to exchange the
hypothesis that the gradient of f is Lipschitz-continuous with the weaker hypothesis that
it is continuous. In this case, the condition may not happen and this makes the
argument made in impossible.

Theorem 2.2.2. Let f : R" — R be a differentiable function in R™, with a continuous
gradient. Let’s suppose that the Algorithm[g uses one-dimensional minimization or Armijo
rule.

Then each cluster point of any sequence {z*} generated by the Algom'thm@ 18 a critical

point of the Problem .
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Proof. The case in which the Algorithm [2| uses the one-dimensional minimization rule
reduces to the case of Armijo rule in the same way as in the demonstration of the Theorem
[2.2.1] Therefore, let us consider the Armijo rule.

Suppose that the Algorithm [2 uses the Armijo rule and {2*} is a generated sequence.
Suppose that {*} has an cluster point Z € R™ and that V f(z*) # 0 for all k. Then there
is a subsequence {z"} that converges to # and {f(2*)} is decreasing.

Suppose that there exists & > 0 such that oy, > @, for all j. Due to the continuity of f,
we have that lim; ., f(z%) = f(Z), hence f(Z) is a cluster point of the sequence { f(z*)}.
Since {f(2*)} is monotone and has a bounded subsequence {f(z%/)}, it follows that
{f(2")} is bounded. Thus, as {f(z*)} is monotone and bounded, {f(z*)} is convergent.

Using that {f(2*)} is decreasing and Armijo inequality, for all j, we obtain that

f(xkjﬂ) < f(xkj+1—1) <... < f(xkj‘*‘l)
< f(@) —oaw, |V (=),

thus,
Fa) = F(451) > o, IV FER) 2 > 06|97 )]P > 0.

Since lim; o, f(z") — f(z%+1) = 0, we have lim;_,., o@||V f(2*7)||?> = 0. Therefore,

lim Vf(2%) = 0.

J—00

Since the gradient of the function f is continuous in R™ and the subsequence {z*/} con-

verges to Z, we have

0= lim Vf(2") = Vf(z),

j—00
therefore 7 is a critical point of the Problem ({2.1)).

Suppose that there is no & > 0 such that oy, > &, for all j. Then for every & > 0
there is a j € N such that o, < &. In particular, for every ¢ € N, such as % > 0, there
exists j; € N such that ay, < % Thus, the sequence { oy, } jen has a subsequence {akji}ieN
which converges to 0, when ¢ — oco. Therefore, without loss of generality, we will assume
that {ax,;} — 0, when j — oo. Combining this information and step 2 of Armijo rule,
for every sufficiently large 7, the initial value of the step size & was reduced at least once.

Therefore, % does not satisfy Armijo inequality 1} that is,

(07

IV F )P,

f (a5 =V iah) > fa) —o
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denoting dy, = %HV f(x%)| and dividing the last inequality by ay;, we have

f (2% = SV FEh)) - fah)

_ k;
" > —o| V()]
or even,
k.
f <xkj — ay, zf(xk;) ) _ f(ka)
AR > —o||Vf (")), (2.16)

i,
Applying the Mean Value Theorem for each j there exists t;; € [0, 1] such that

2 @& —Vf(wkj) — f(2M) =
f ( ’“fuw(aamu) fe)

_ <Vf (tij’“f (1=t (@M — dk.—:l)) 2k — j”;’:g XII xk]'>
- <Vf (xkj o ||§§EI §H + by IV f(z J)||> % IIVfEi’“3H>

_ <Vf (x’“j —a- tkj)dkj%) ,—akj%> | (217

Combining equality (2.17)) and inequality ([2.16f), we have

k., k.
(V5 (255 — (1 1)y, L8 |y T
V(™ AV xj )
AL > o[V )],
J

\
—~|—

that is,

_ 2 (1 —t.))é V f(xh) Vf(xh) . ki
(v (- 0= t)eu ity ) wrcay) > IVl @9

Since {ax,} — 0, {t,} is bounded and {”Vf DV is bounded (because Vf(a%7) —

Vf(z)), then a, = TJHVf(x ¥)|| = 0 (j = oo). Turning to the limit when j — oo in

the relation ([2.18]), we have

Vi@ > .
—(V —— —o||V
(Vi) i) = ~elvs@
or,
—IVi@I = —ol[VF@)].
Since o € (0,1), then Vf(Z) =0, so Z is a critical point of the Problem [2.1] O

Remark 2.2.1. A natural hypothesis is to assume that the level set Lygn(f(2")) is
bounded. If it is bounded, as we are working with descent methods, f(x*) < f(x°), for all
k, therefore the sequence {x*} C L(f(x°)) and will also be bounded. This guarantees that

{2*} admits at least one cluster point and, according to the Theorems|2.2.1| and|2.2.3, it

will be a critical point.
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In Theorems [2.2.1) and [2.2.2 we proved that if the sequence {z*} has cluster points,

they are critical points of the Problem ([2.1]). If we add the assumption that the function f
is convex, then we obtain stronger convergence results. In this case, if the set of minimizers

is non-empty, then the sequence {2*} converges to a solution of the Problem ([2.1)).

Theorem 2.2.3. Let f: R™ — R be a convex function, differentiable in R™, with contin-
uous gradient. Suppose that the Algorithm[J uses the Armijo rule with & < 1. If the set
of unconstrained minimizers of f is non-empty, then any sequence {x*} generated by the

Algorithm@ converges to a solution of the Problem :

Proof. Let & € R™ be a solution to the problem. By Armijo inequality (2.10)), for all k,

we have
f(@®) = f@*) > oon ||V £ (")

Then,

f(@®) = f(@) = f(2°) = f(¥)
= f(2%) — f(a") + f(z') = f(2®) + f(2?) —
— f@" ) 4+ f(@) = f@T) 4+ fEY) = f(a")

k—1

Yo (fla) = )

=0
k—

)_l

>0 ) il VI

=0

Passing the limit when k£ — oo, we have

Z%“Vf 2 < {0 =@ (2.19)

g

Due to the convexity of the function f, the Proposition and the optimality of Z,

we have that

(Vf(zh),z — 2% < f(2) - f(2") <. (2.20)
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Using (2.7 , and the relation ai < a4, we have that

k+1 E+1 ka2

|| — :Z||2 = ka —ZT+zx

k

B R BHL kY

=(z ¥ a” —T 4w
= |la* — F||? + 2(a* — F, 2" — k) 4 ||2h T — )2
= [l2* = z|* + 2(2" — 7, ~ V f(2")) + ||~V f(a")]®
= [l2* = Z* + 204 (V f(2%), 7 — 2*) + oZ[|V f(2")|?
< Jla* = Zl* + |V f ()] (2.21)
Let us fix an arbitrary k. Using the inequality in chain, for all ;7 > k + 1, we
have that
lo7 = Z|* < Jla7=" = Z* + o [V (7]

<272 = 22 + o [V F @ )P + oy [V f (@771

< [|l=* $||2+Zaz|lvf )|? (2.22)

< [|l=* — Z[* + Z%va )? < oo,

where we used (2.19) in the last inequality. This shows that the sequence {x*} is bounded,
so {z¥} has an cluster point . Thus, Theorem guarantees that V f(z) = 0. Using
convexity, we conclude that & is a solution to the Problem ({2.1]) (by Theorem . So
the same analysis for Z can be done for z. Therefore, from , forall j > k+ 1, we

have
2/ — 2|* < [|2* $||2+Zozz IV F()?, (2.23)
i=k

and from (2.19)), we have
hm (Za,”Vf ||2) =0.

Given ¢ > 0 arbitrarily small, there exists k; € N such that if & > k;, then

Z%HW )|” <

Since 7 is an cluster point of the sequence {z*}, there exists k, € N such that ky > k;

and
)
ka A2
—z|)* < =
¥ — 3> < £
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From the relation (2.23)), for all § > 0,

o
27 — 2% < fla* = &2 + Yl Vf(2)]?

i=ko

)
< +§:(5, ]Zkz—l—l

|

This proves that {z*} converges to 7. O



Chapter 3

Subgradient method

The chapter will be divided into two sections. In the first section, we will present the first
changes that arise when we move from the differentiable context to the non-differentiable
context. The main results are the fact that given y € df(x), it can happen that —y ¢
Dy(x), that in general we only know one subgradient at each point and the difficulty in
choosing stopping rules. In the second section, we will introduce the subgradient method,
which is not necessarily a descent method, in each iteration we take the next step in the
opposite direction of a subgradient, and in the simplest cases the step size is pre-fixed
and is not chosen using a line search. We will also present step size rules and perform a
convergence analysis of the method. The main results are some inequalities that help in
the proof of convergence and the proofs of convergence.

The construction of the first and second sections were based on references [2, [ 16,

19, 21].

3.1 Non-differentiable convex optimization

Let us consider the unconstrained minimization problem
min  f(x)

st. zeR"

(3.1)

where f : R™ — R is a convex function in R™. Therefore, f may not be differentiable.
By the Proposition the directional derivative of the function f at the point
x € R in the direction d € R" satisfies the following condition
f(@;d) = max{(y,d) | y € 0f(x)}, (3.2)

27
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where 0f(x) is the subdifferential of f at the point = defined in that is,
Of(z) = {y €R" | f(2) > f(z)+ (g5 — ), ¥z eER". (33)

Given d € Dy(x), there exists ¢ > 0 such that f(x + td) < f(x) for all ¢t € (0,¢].
Thus w < 0, for all t € (0,¢|, therefore f'(x;d) < 0. Using the relation ,
we conclude that max{(y,d) | y € 9f(z)} < 0 and, therefore, that (y,d) < 0 for all
y € Of(x).

On the other hand, if (y,d) < 0 for all y € df(x) then max{(y,d) | y € df(z)} < 0.
Using the relation , we conclude that f'(z;d) < 0 and therefore, there exists § > 0
such that w < 0 for all t € (0,6]. Thus, f(x +td) < f(z) for all t € (0,] and
therefore d € Dy(x).

Thus, for d € Dy(x) it is necessary that (y,d) < 0 for all y € df(z), and for (y,d) <0
for all y € Of(z) it is necessary that d € Dy(z). In both cases, it is necessary to know
the entire set 0f(x).

Next, we will see that given y € df(x), it can happen that —y ¢ Dy(z).

Example 3.1.1. Let f: R* - R, f(z) = |z1| + 2|xa|. Let us consider x = (z1,0), where

x1 > 0 s arbitrary. First, we will show that
y=(1,2) € 0f(x).
In fact, for all z = (21, z2) € R?, we have that
|21] + 2|22] > 21 + 22,
using x = (x1,0), we have
21| + 2|22| > |21| + 21 — 21 + 220,

therefore, by defining the function f and manipulating the terms z; — x1 + 225, we can

write
f((21,22)) > f((21,0)) +((1,2), (21, 22) — (21,0)),

f(z) 2 f(2) + (y, 2 = x).
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Now, let’s show that —y ¢ Dy(x). In fact, for every sufficiently small t > 0,

flz —ty) = f((x1 — tyr, ke — ty2)) = |x1 — tyn| + 2|zy — tys| = |21 — | + 2]0 — 2¢|
= I1+3t
> x1 = |z + 2[z2| = f(2).

In general, we are able to evaluate the objective function at current points, we know a
subgradient at each point and combinations of this information throughout the iterations.
This means that it is not expected to know the entire set df(x) in each x and with this
comes another difficulty in applying the ideas of descent methods in the non-differentiable
context.

In the differentiable context, a common stopping criterion is given by the condition
IV f(z*)]| < e, for some small tolerance ¢ > 0. This condition does not directly apply to
the non-differentiable case because the set-point operator z — 0f(x) is not “continuous”,

as we will see in the next example.

Example 3.1.2. Let f : R — R be given by f(z) = |z|. The point T = 0 is the only

unconstrained global minimizer of f. We have

;

-1, if x <0
of(x) =q[-1,1], ifz=0
1, if x > 0.

Then for every point x* # 0, with x* converging to T = 0, we have that |y| = 1 for every
y € Of(a*). Therefore, even if z* is close to the solution of the problem, Of(z*) does
not have subgradients with a small norm. Furthermore, it may happen that we find the
solution =¥ = 0 for some k, and this fact is not recognized by the method if we only know
one subgradient at each point, since we compute y € Of(0) = [—1, 1] and therefore |y| can

be nonzero.

3.2 Subgradient method

Let us consider the following algorithm to solve the Problem (3.1)), that is, to minimize a

convex function.
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Algorithm 3 Subgradient method
1: Choose a sequence {a;} C Ry;

2: Choose z' € R" and set k := 1;
3: Compute d* € Of (z¥);

4: Compute

5: Set k := k + 1 and return to Step 3.

In step 1, we pre-fix a sequence of step sizes that will be taken in each iteration of
the method. In step 2, we take any starting point 2! € R™ and set k := 1. In step 3, we
calculate some subgradient d* € df(x*), and, by the Proposition [1.0.5] the set df(x*) is
non-empty. We are also assuming that it is possible to compute a subgradient at each
point. In step 4, we use the point z*, the step size a; and the subgradient d* to obtain
the point zFt!. In step 5, we do k := k + 1 and repeat the procedure for the new point
obtained.

k¥ we calculate a subgradient d* in

According to the structure of the method, from z
the set Of(z*) and use the step size oy to walk in the opposite direction to the subgradi-
ent. Therefore, the subgradient method looks like the gradient method for differentiable
functions.

In the simplest cases, the sequence of step sizes {ay} is pre-fixed at step 1 and the
step size are not chosen using a line search.

As we saw in the example given y € Of(z) it can happen that —y ¢ Dy(x).
Therefore, by building the Algorithm [3 the subgradient method is not necessarily a
descent method.

It is common that throughout the iterations, we keep the “best” point obtained so far,

that is, the point that provides the lowest value f so far. Thus, we define f._, = f(z')

and for k > 2,
Fres = min{ e}, f(a*)}.
Therefore,

frese = min{f(z"), ..., f(z")},

that is, from a finite amount of points !, ..., 2" obtained, we have a finite amount of

images f(z!),..., f(2*), and we take f£ , as the smallest of them all. As a consequence,
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the sequence {ff .} is non-increasing.

Step size rules. Let us cover 5 basic step length rules. Specifically, the rules of con-
stant step size, constant step length, square summable but not summable, nonsummable
diminishing and nonsummable diminishing step lengths.

Constant step size. We choose the step size oy = « for all iterations, where a > 0
does not depend on k.

Constant step length. We choose the step size oy = HJ_’CH’ for all iterations, where
v > 0 does not depend on k.

Square summable but not summable. We choose the sequence {ay} of step sizes

such that it satisfies the following conditions:

o0 o
a > 0, Zak:+oo, Zaz<—|—oo.
k=1 k=1

For example, o = 1/k, for all k.
Nonsummable diminishing. We choose the sequence {a;} of step size such that it

satisfies the following conditions:

k—o0

(o]
ap >0, lim o =0, Zozk = +00.
k=1

For example, oy, = 1/V/k, for all k.

Nonsummable diminishing step lengths. We choose the step size ay = ”gﬁ” for

all iterations, where the sequence {7} satisfies the following conditions:
720, lm oy =0, ;% = +o0.

When using one of these 5 step length rules, it is defined and pre-fixed in step 1 of the
Algorithm [3] that is, it does not depend on data obtained during the iterations. Unlike
line search, which depends on the current point and the fixed descent direction.

Convergence analysis. We will prove convergence results for each of the 5 step
size rules presented. We will see that in the case of the constant step size and constant
step length rules we guarantee that ff , converges to an interval “close” to the solution
f(z), and that in the case of the rules square summable but not summable, nonsummable
diminishing and nonsummable diminishing step lengths we guarantee that ff_, converges

to the solution f(Z).
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For the analysis, we assume that there is a minimizer of f, say z. We assume that

there is a L such that ||d*|| < L, for all k; this condition holds, for example, when the

function f is Lipschitz. We assume that we know R > 0 such that R > ||z! — z||.

Next, we will prove some classic inequalities that will be useful in convergence proofs.

By defining the point 2**! in the relation we obtain that

k+1 k

2" = Z]* = f|a* — apd® — 7|

= ||2* — 7 — apd"||?

= (2 — 7 — apd®, 2" — 7 — ad)

= ||z* — z||? — apla® — z,d") — g (d¥, 2F — ) + || —udF|?

= [|2* — |* - 200(d*, 2" — 7) + o[l d"|*.
Since d* € df(x*), by the definition of the subdifferential (3.3]), we have
f(@) = f(2*) + (", 7 - 2"),

thus,

or even,

fah) = f(z) < (d", 2" — 7).

Combining the equality (3.5) with the inequality (3.6)), we obtain that

2" = Z)* < Jla* = Z]* = 200 (f(2*) = £(2)) + o],

This inequality (3.7)) is the property that makes subgradient methods work.

there, for sufficiently small steps, the distance to the set of solutions decreases.

Applying the inequality as a chain, we have

Hl’k—i-l — j”2 < ka _ j||2 — 20y, (f(xk) _ f(i’)) + Oéi”dkHz
< et = 22 = 20y (F() = F(@)) + 0F [ldE P

— 20y (f(a*) = £(2)) + af]|d"|?

k k
<t =z =2 (fa') = f(@) + Y af ||,
i=1 i=1

(3.5)

(3.7)

From
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That is,
k 4 k ,
Jo = 3| < ot = 2l —2) o (F) — f@) + D2 (38)
T i—1

As [|2*! — Z||2 > 0 and we are assuming that [|z! — Z|| < R, by the inequality (3.8,

we obtain that

22042 f(@) < R2+Za2|\d’|]2 (3.9)

=1

On the other hand, we have to

Zai (f(xz) _ f(f)) > Zai <anllnk{f(x1) — f($)})

77777

thus,
22@2 @) >2(fE, - Zaz (3.10)

Now, combining the inequalities (3.9)) and ( -, we have

fbest Zal S‘RQ—FE:O'/QHdZH2

therefore,
R+ 30, ailld'|*

22 =1 %

As we assume that ||d¥|| < L for all k, then from the inequality (3.11]), we obtain that

(3.11)

flfest - f<j> —

R2+L221 10(
22,10@ '

From the inequality (3.12]), we will obtain several convergence results.

oot = [(7) < (3.12)

Constant step size. Since oy = « for all k, then from inequality (3.12)), we have

2 2
flo— () < AL T
2 E’L 1 «Q
B R? + L%ka?
a 2ka
B R? L%«
ka2
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therefore,
. _ L*a
khm fl?est — f(z) < ——.
—00 2
Then, using the subgradient method with constant step size, ff, converges to a point
in the interval [ f(@), f(z) + %a . As a consequence, the precision depends on the step
length value, as the smaller the value of «, the smaller % will be.

Constant step length. Since oy, = IICZ“II for all k£, then by the inequality 1) and

by the fact that a; = ”Ji” > 1, we have

k i
fio—f@) < R+ 30 of || d|?
best — 22521 o
k 2 i
BT el
koo o
22 im1 T
R4k
=
25,
2 2
< R —:lw
231
R+ ky?
2k1
2ky 27

therefore,
T f, — f(5) < 2L
Then, using the subgradient method with constant step length, fF_. converges to a
point in the interval [ f(z), f(z) + %] Consequently, the precision depends on the value
of the step length, since the smaller the value of 7, the smaller % will be.
Square summable but not summable. Since we choose the sequence {ay} of step

sizes such that it satisfies the following conditions:

o0

then by the inequality (3.12)), we have that
R24+ 125°F 2
flfest - f(j) S i kZZ:1 -
23 i1
_RADPYE
B 2 Zf:l @i
R+ L*a
2 Zf:l i
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. _ . . k . 21124
Since R? + L& is constant and limy_, o <Zi:1 ozi> = —+oo then limy_ o 2RZJZFL1 o = 0,

therefore,

lim flfest - f(z) =0.
k—o0

Then, using the subgradient method with step length square summable but not
summable, ff . converges to f(Z), which is the solution to the problem.
Nonsummable diminishing. We choose the sequence {ay} of step sizes such that

it satisfies the conditions:
o0
ap >0 lim ap =0 ap = +00
kY, kmyo0 k 3 Z k + P

and let € > 0. Since limy_,o, ag = 0, there exists n; € N such that if ¢ > nq, then a; < I

On the other hand, since limj_, (Zle ai> = 400, there exists no € N such that

iai > é <R2 + LQiag) : (3.13)

Let ng = max{ny,ny}. Then for k > ny, the right side of the inequality can be
written as
R2—|—L22110¢2 R2+L2211a2+L2ZZ mHa
221‘:10@ 221' 1 Qi 222 1Q
R2—|—LQZ:z Lol LQZZ n1+1a2
2 Zi:l @i 230 o +2 Zi:n1+1 @

Now let us analyze each part of the relationship separately (3.14]). For the first installment,

(3.14)

since ny < k, we have

R2+L221 1Oé <R2+L221 1052.
2 Zi:l a; o 2 Z;’Zl ;
Using the relation ((3.13)), we have

1 €
2210‘2 N RZ+L2ZZ 104

therefore,
R+ L2y " o < R*+ L2y " o
2 Zi:l @i a 2302 i
R2 + L2y o £
- 2 RZ+ L2y " of

£
>
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For the second part of the relation ({3.14]), since a;; > 0 for all i, we have

L2 Zz n1+1a < L2 Zl n1+1CY
2 221 o+ 2 Zi:nl—i-l a2 Zz’:nl—f—l @

. 9 € ip - k 2 k 3
Since a; < 75 if @ > ny, then of < a5 if i > ny, thus, Yo L 0f <D0 L qigs,

and therefore

2 2
L Zz n1+1a < L Zz n1+1a1L2 . E

2 Zi:m—H o 2 Zi:nl—i-l 0% 2

Finally, we conclude that

R2+L2Zz la R2+L2Zz la + LQZ@ n1+1a

2 Z¢:1 Q; 2 Zi:l 0% 2 Z?:ll a; + 2 Zi:nl—i—l Qg
<Zii-:
= 2 2 - 9

this shows that the right side of the inequality converges to 0, and therefore,
limy, o0 frog — f(2) = 0.

Then, using the subgradient method with nonsummable diminishing step size, f
converges to f(Z), which is the solution to the problem.

Nonsummable diminishing step lengths. We choose the step size ay, = - for

all iterations, such that the sequence {v;} satisfies the following conditions:
T 20, lim =0, Zw =

Using the inequality (3.11)), we obtain that

R+ 3o of||d|?
2 Zz L
R? + Zz Y
2X i T
< R22+ Zi:l ; -
L Zf:l Vi

By the same analysis done in the case of nonsummable diminishing step size, it follows

flf;est - f(j) =

that % converges to 0, when k — oo, therefore limy .., f£., — f(Z) = 0.

Then, using the subgradient method with nonsummable diminishing step lengths, f
converges to f(Z), which is the solution to the problem.

A bound on the suboptimality bound. In the inequality , we estimate

_ R24I25F 2 .
the number fX_ — f(7) by ﬁ Since 22—21 is a convex and symmetric
i=1 %Y i=1 %



Chapter 3. Subgradient method 37

function of aq, ..., ag, so it reaches its smallest value when «; = o, for all : = 1,... k,

see []. In this case, the optimal value is given by
R? + L?ka?
2kae

Since we have equality
R+ [’ka® £+ L%

2ka 2
using the inequality between the arithmetic and geometric means (A.M)>(G.M) for the

numbers %2 and L%a, we obtain that

R? 2

7=+ L R?

ka > /L2
2 ~V ko @

_RL

and equality occurs when

RZ

— =L«

ko ’
that is, when

R
WWE  VE
2 2 k 2
By this analysis, the choice of aq, ..., a; that minimizes the estimate %E’ja' is
=17

given by

R

ai—(L) 1=1,...,k,

and with this choice we obtain that

RL
fkes - f ) < —.
best ( ) \/E

Therefore, if we made any other step size choice for aq, ..., ax, would have to

k
RE+ L2y o >
2 Zle Qi a
Given € > 0, so that the inequality

4z

RL
— <=,

Vi

RL\®
ks <_) .
£
2 2 k 2
%&;% as the stopping criterion, then the
i=1"""

number of steps needed to obtain a guaranteed accuracy of ¢ is at least (RL/¢)?, for any

is true, it is necessary that

this shows that if we use the estimate

choice of step size for ay, ..., a,. This shows that for this choice of stopping criterion, the

subgradient method will be very slow.



Chapter 4

Subgradient method with

non-monotone line search

The chapter will be divided into two sections. In the first section, we will present the
subgradient projection method with non-monotone line search algorithm, proposed in
[8]. This algorithm is not necessarily a descent method, but any potential increase in
the function values is limited by a non-increasing sequence of parameters. Moreover,
the step sizes are chosen adaptively using a non-monotone line search in the opposite
direction to a subgradient. The main results include the well-definition of the algorithm
and some inequalities that assist in the convergence proofs. In the second section, we
will present the convergence analysis of the method under additional assumptions on the
non-monotonicity sequence. The main results are the convergence proofs.
Consider the constrained minimization problem
min  f(z)
(4.1)
st. xzel,
where f : R® — R is a convex function and C C R" is a non-empty, convex and closed
set. We denote the set of solutions to Problem by Q* and the optimal value of the

function f by f*. In this chapter, we assume that:
(H1) f:R"™ — R is a convex and L c-Lipschitz continuous function;

(H2) f* :=inf,ec f(x) > —o0.

38
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4.1 The algorithm

Consider the following algorithm to solve the Problem (4.1)):

Algorithm 4 SubGrad projection method with non-monotone line search
1: Fix ¢ > 0, (7)ken C Ry a non-increasing sequence, p > 1/2, g € (0,1) and o > 0.

Choose an initial point 1 € C. Set oy = a and k = 1;
2: Choose si, € Of (xg). If s, = 0, then STOP and return xy;

3: Compute

e :=min{l € N: flayp < By, f(Pelar — Blowsrk)) < f(xr) — p(Baw)llskll” + i}

(4.2)

4: Set xp41 = Pol(xy — 6lkaksk), apy1 = B* Loy, Update k := k41 and return to Step
2.

Remark 4.1.1. By the Proposition[1.0.8, the set where the function f is not differentiable
is of zero measure, which means that f will almost always be differentiable. Since, in the
case where the function f is differentiable at a point x € R™ and convex, the Proposition
guarantees that Of (x) = {V f(x)}, then almost every direction opposite a subgradient
will be a descent direction. Thus, it is expected that the Algorithm[]] skips the points where
the function f is not differentiable and which are not minima points, and behaves in a

similar way to the gradient method with this non-monotone line search.

The next lemma guarantees that it is possible to calculate [, satisfying (4.2)), as a con-

sequence, we will obtain two inequalities that will be important throughout the chapter.

Lemma 4.1.1. There exists [}, satisfying . As a consequence, the following inequal-
itres hold:

arpr < ey frrn) < flaw) = pBarpallskl® + . VR EN, (4.3)
and xp1 € C for all k € N.

Proof. Since the function f is continuous, the function P¢ is continuous, and the point
xp € C, we have that lim, o+ (f(Pe(xr — asi)) — f(zg) + pallsk]|?) = 0. Thus, given

Y > 0, there exists np > 0 such that

F(Pel(ar — asy)) — flan) + pallspll” <, Va € (0,m),
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or equivalently,

F(Pelae — asi)) < flaw) — pallsell® +yn, Vo€ (0,m]. (4.4)

Since 8 € (0,1), we have lim;_,, B'a, = 0. Since ¢Bv; > 0 there exists [ € N such that
I > [ implies that S'ay, < ¢fBvg. Since 1y, > 0, there exists [ € N such that { > [ implies
that Slag € (0,m]. Taking I* = max{l, l~}, then [ > [* implies that

Blak < By, f(Polar — Blarsy)) < flar) — p(B'ow)||sell* + Yk

Now it remains to take [, as the smallest of the numbers i = 0,1,...,[* such that Bay

satisfies the two inequalities of (4.2)), that is,

Blog, < cByw,  f(Polar — Blasy)) < flax) — p(Baw)llsell” + e,

this proves that there is [} satisfying .

From fA%a; < cBvyi, we obtain that % 1oy, < ¢, which by the definition of ay; in
Step 4 means that agiq < .

From f(Pco(x, — B*apsi)) < f(zx) — p(B%aw)||sk]|? + &, from the definition of zj,,
and ay1 in Step 4, we obtain that f(zz11) < f(zr) — pBarst|sell® + -

From the definition of x4 and ay 1, as C is convex and closed, it follows that x4, € C,

for all k. O

In step 1 of the Algorithm [4 we fix the parameters that will be used during the iter-
ations and the sequence (i )ren of non-monotonicity that will be used in the line search.
In step 2, we calculate some subgradient s € 0f(xy), given that, by the Propositionm
the set 0f(xy) is non-empty. If s, = 0, by the Proposition we find the solution. In
step 3, we calculate [; satisfying . As we saw previously, the Lemmam guarantees
the existence of . Therefore, of the numbers S'a;, that satisfy the two inequalities in
, as B3 € (0,1), then S'qy is the biggest of them. In step 4, we use By, as the step
size in the direction of —s;,, and project the point x;, — S sy, in the set C. Additionally,
we use [, to define a1 := % Loy, which will be used to compute the new step size. We
do k := k + 1 and repeat the procedure.

From the second inequality in ([4.3), we have f(zj41) < f(zx) — pBagi1|se]|* + i for
all k. Since —pBagy1|sk]|? <0, it follows that

f(xr) < flan) + 9%, Vk€N.
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Since 7 > 0 for all k, the inequality above shows that f(xy) < f(zx4+1) can happen, since
—sj may not be a direction of descent, but we certainly have that f(xp1) < f(zx) + Yk
Later, we will make hypotheses that cause v, to approach de 0 asymptotically.

Thus, the step size was chosen using a non-monotone line search in the opposite
direction to the subgradient (made in calculating the number /) and the possible increase
of the objective function is limited by a sequence of positive parameters that implicitly
control step size as we saw in the previous paragraph.

In the next lemma, we will prove classical inequalities that will be useful in convergence

proofs.

Lemma 4.1.2. For every x € R", we have

2Bapi1(f(wr) = f(2)) < llox — 2] = Nown — 2 + Bailsill®, VR €N, (4.5)

Additionally, if f is a o-strongly convex function, then

2Bap1(f(xr) = f(2)) < (1= oBagi)lloe — 2)|* = lagrs — =l + Bai sl VheN.
(4.6)

Proof. Since the inequality (4.6) reduces to inequality (4.5) when o = 0, it suffices to
prove ([4.6)). From the definition of 241 and aj4 in Step 4 of Algorithm [f] and Proposition
1.0.13] we have

[2ks1 — 2l = Pz — B*aysy) — ||
< |lzx — B agsg — z|? (4.7)
= (zx — . — s, x — v — B agsy)
=l — l* — 28" an(sp, 2 — x) + (8%)*(cw)?[|s ]|
= [l — ]l + 2Ban11 (sp. & — @) + (B%)* ()|l
Now, since we are assuming that f is a o-strongly convex function, by Proposition [1.0.9]

we have (s, x — z3) < f(z) — f(zx) — (0/2)||zx — z||*>. Combining this information with

inequality (4.7]) we obtain that
lnsr = ol < lon — 2> + 280 sp 2 — ) + (8% ()|l
< Jlan = @l + 2801 (f(2) = f(zi) = (0/2)llzi = @) + (8")2(cw)? s

= llow — @l* + 28041 (f(2) = f(2x)) = oBawsr||lzn — | + (8%)*(an)*[Isell?,
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thus,

2Bap (f(ar) = f(2)) < (1= oBawsr) o — 2|® = ores — zl* + (B%) ()| sk,

or even,
2Bon1(f(zx) — f(2) < (1= oBagsr)llon — 2l* — o — 2l + B2af . |lsell”.

This proves inequality (4.6]). m

The next lemma shows a relationship between the sequences (o )ren and (Vx)gen. It

will be used to show an inequality that helps in proofs of convergence.

Lemma 4.1.3. The following inequality occurs:

. Vi
> —_ . 4.
oy, > min {al,cﬂyk, iz p)Lfc,C} , VkeN (4.8)

Proof. For k = 1, it is clear that a; > min {oq, B, W} Suppose, by contradic-
f.c

tion, that there exists k € N such that

Qg1 < min {061, CBVk+1, (11%} : (4.9)
f.C

As we are assuming that the sequence (vx)ren is non-increasing, by the definition of

a1 in Step 4 of the algorithm and by the inequality (4.9)), we have

b=lay, = o <min{a ,C ,L} <min{c ,L}, 4.10
B k k+1 1, BV (1+p)Lfc7c > Bk (1+,0)L?7C ( )

thus,
B oy < by (4.11)

As a function f is L ¢-Lipschitz continuous and the point x;, € C, by Proposition (1.0.13)),

we have

f(Pe(zr, — B agsi)) — fax) < Lyel|Pe(zy — 8% onsy) — 2|
< Lycllog — B* tagsy, — x|

= LyeB* Loy sill- (4.12)
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By Proposition , we have ||sg|]| < Lye. Thus, combining this inequality with in-
equality , we obtain
f(Pe(xy, — 8% tansy)) — flaw) + pB" allsil|? < Ly arllsell + pB" |kl
< 125 g+ pB
= Lio (B% o + pB*ony)
= Lic (8" log) (1+p). (4.13)
Using inequality , we have

5lk710ék < Tk

(1+p) L
which, combined with inequality (4.13]) gives us

F(Pelay — % tousi)) — flaw) + pB" anllsill® < Lie (8% aw) (14 p)

Yk
< L> _ 1+
f.c ((1—{—0)[’?,6) ( p)

= Yk,
thus,
F(Pelay — B tagsy)) < flax) — pB™ onllskll® + e (4.14)
We conclude that inequalities and hold true, which contradicts the definition

of lx, since in this case, [, — 1 satisfies both inequalities in (4.2). Therefore, inequality

(4.8) holds for all k. O

Remark 4.1.2. The choice of ay is crucial for the method’s performance. In Ferreira
et al. [§], there is no theoretically founded criterion for choosing oy in the context of line

search methods. In cases where we know the constant Ly c, a conservative choice is given
by
a1 = min g ¢fy _n
"(1+p)Le
because in this case, it follows from the Lemma that the line search condition is
already satisfied with l; = 0.

In the next lemma, we will prove important inequalities that will be used in the
convergence proofs of the sequence (zy)ren. To do so, we will combine the inequalities

(4.3]) with Lemmas.1.2land 4.1.3] and define the following positive constants for p > 1/2:

R ) 1 - _B
@'_mm{’h’c@(l—%p)[zic}’ r: @(25 p). (4.15)
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Lemma 4.1.4. Suppose Q* # &. Let (x)ken be the sequence generated by Algom'thm
and let x* € Q*. Then, the following inequality holds:

1
Tyee1 (f(zg) — ) < |loge — 2%))* — |lzpgr — 21> + ;ﬁcyﬁ, VEk € N. (4.16)
Additionally, if f is a o-strongly convex function, we have:
1
Dy (fan) = 1) £ (L= 0BO0y) ok — 27| = g — ™[> + ;50%37 vk eN. (4.17)

Proof. Since the inequality (4.17) becomes the inequality (4.6) when o = 0, then it is
sufficient to prove the inequality (4.17). By Lemma [4.1.1 we have

fxy) = f(rpg) + gty

Bag||se)* <

On the other hand, taking z* in the inequality (4.6) of the Lemma [4.1.2) we obtain
that

2Bags1(f(ar) = f) < (1= oBogsr)|on — 27|° = oy — 2"[* + B2ag 1y [lsal|”
Now, let’s see that

52@i+1H5k||2 = 504k+1504k+1||5k’|2

< Bowas (f(xk) — fl(oﬂﬁk+1) + %)

f

— f(@k41) n ﬁ)
p

< ()

p
(f(l'k:) - f($k+1)> n Bk
( ()

= 5Oék+1

= Bak—i-l
P P

Jlay) — f* 1
+ _50416—&-17]67

P P

< Bagya
thus,

2Baki1(f(wr) = F7) < (1= oBapsr) o — " |° = [ons — 27| + i, llsell”

< (1= ofawn)lon = oI = e =+ B (220
1
+ =B 1Yk,
P
therefore,

(28- g)amum) — f*) < (1= 0B |wx — 2*|* = ||znss — "2+ %ﬁakm. (4.18)
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On the other hand, using the Lemma.1.3} considering that (yx)ren iS & non-increasing
sequence, and using the first equality in (4.15)), we have

Q41 = Min {041, CBVr+1, (1:%}
Py

. aq ﬁ 1
= min B, Vet
Ve+1 (L+p)L7 e

> i (€51 %
Z Mg —,C0, =75 ( Vk+1
M (L+p)L3 e !

Furthermore, by Lemma we have apy1 < ¢, which combined with (4.18]) e
[.19) guarantees what

1
(25 - §>@7k+l(f($k) — [*) < (1= 08Oy )k — 2*|1> = [Jwpsr — 2> + ;ﬂwg,
therefore,

* * * 1
Dy (f(ax) = %) < (1= 0BOve0) |lon — 2*)1* = [loga — 27| + ;ﬁcv@
O

Remark 4.1.3. Comparing the inequalities and @ with the inequalities
and respectively, we conclude that the inequalities and transfer, to

the sequence (Vi)gen of mon-monotonicity, classical conditions that are imposed for the
step size sequence that control the behavior of the sequence (xy) generated by the classic
subgradient method, as we saw in chapter[3 The algorithm []) uses adaptive step sizes,

which are obtained over the course of iterations. In the classic case, the step sizes were

pre-fized. Furthermore, for each sequence (i) that we choose, from the Lemma
we obtain that axy1 < ¢y, for all k; and in the inequality in the Lemma

we obtain that api1 > Ovga1, for all k. Combining this information, we have that the

Algorithm [{] chooses, using a non-monotone line search, the step size ay satisfying
Ovpr1 < apyy < o, VEeEN.

Thus, the method allows different choices for the sequence () that controls non-monotonicity.
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4.2 Convergence analysis

For the convergence analysis, we will analyze the behavior of the sequence (xy)reny under
the hypotheses (H1), (H2) and two additional hypotheses. Additional hypotheses will be

used separately and only when explicitly stated. The new hypotheses are:

(H3) The sequence of non-monotonicity parameters (Vx)ren satisfies

N 2
lm 2=k g

N
N—+400 Zk:l ryk+1

(H4) The sequence of non-monotonicity parameters (7x)gen satisfies

N
lim k=% g
N—too Nyn4a .

Hypotheses are made about the behavior of the sequence (yx)reny and with them we

obtain the following convergence results.

Theorem 4.2.1. Assume that Q* # &. Let (zx)ren be generated by Algorithm |4 with
p>1/2 and x* € Q*. Then, for each fired N € N, the following inequality hold:

N
min { f(zx) — f*: k=1,...,N} < %(Hxl — |2+ /Bp_ch%i) (4.20)

N
k=1 > h=1 Vet
Consequently, if (H3) holds, then limy_, |, min {f(xk) - k=1,..., N} =0.
Proof. Let k < N. By the inequality (4.16) in Lemma [4.1.4) we have

* * * 1
Dy (f () = f*) < o — 2*|* = logg — 2*|* + ;Bwi-

Thus,

al 1
> Ty (flan) = ) <> (||$k — 2| = [Japn — 2"]° + ;50%3>
k=1

k=1

N
1

= lley = 2*|* = lzns — 2" 1> + > =B
=1 P

N
. 1
< oy =P + ) ;ﬁcwi. (4.21)
k=1

On the other hand,

,,,,,

> Twa(f(ae) = f) 2T min {f(ae) =} wn (4.22)
k=1
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Combining the inequalities (4.21]) and (4.22)), we obtain that

I' min {f(@r) =1 }Z%H <z —= H2+Z 50%7

therefore,

1

. 1
min_{f(zy) — f}Sf(Hxl—fL’HQﬂL 5627k>m

k=1,..,N

and this proves (4.20]). Now, assuming that (H3) is valid and using (4.20]), we have

R Y7 DA
min {f x) — f* } = I H . N ’
k=1,..,.N [ADDAINRNEEEES 1 DA

and how (H3) implies that limy_,. —x——— = 0, we concluded that
D k=1 Y+l

lim mm {f Tk) f*}:O.

N—o0 k=

.....

O

The Theorem provides an inequality that together with hypothesis (H3) guar-

antees that the sequence min {f(a:k) o k=1,..., N} converges to f*, provided that

2* # . This means that convergence information is obtained on the functional values.

If we assume that the sequence (7x)ren satisfies the following hypotheses:
(H5) Y2097 < +oo,

(H6) 25y = +oo,

then the next theorem ensures that the sequence (z)ren converges to the solution of the

Problem (4.1)) when the set Q* # &.

Remark 4.2.1. If (v )ren satisfies (H5) and (HG6), then (i )ken also satisfies (H3). The

sequence (Vi)ren with v = 1/k satisfies (H5) and (HG).

Theorem 4.2.2. Let (zy)ren be generated by Algorithm |4) with p > 1/2. Assume that
(H5) holds. If Q* # &, then (x)ken s bounded. Moreover, if (H6) hold, then (xy)ken

converges to a solution of Problem .

Proof. Let x € Q*. By inequality (4.16]) in Lemma for every k, we have

" 1
et (f (zi) — %) <l — 2])* = [|oep — z)* + ;50%37
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that is,
. 1
lwrsr — 2l < ok = @f* = Py (F () = ) + ;ﬁwi-

As z € Q*, we have f(x) — f* > 0 for all k. Therefore,

1
1 — 2l < flaw — 2)|* = Tye (f(z) — ) + ;50%3
1
< |lzr —=|* + ;50%3,

that is,
s = alP < o =l + 28, VEEN,

Since z € Q* is arbitrary, and by (H5) the sequence (%Bcvz)kEN is summable, then by
the last inequality and Definition we conclude that the sequence (zy)ren is quasi-
Féjer convergent to the set Q*. Since Q* # @&, by item (i) of Proposition , we have
that the sequence (xy)gen is bounded. This proves the first assertion.

Now, let us define a subsequence (2, )nen Of (2)ren such that

fany) = "= :minN{f(%)—f*}, N eN.

-----

Since the sequence (xy)ken is bounded, then the subsequence (2, ) ven is also bounded.
By the Bolzano-Weierstrass Theorem, there is a subsequence of (xy, ) yen that is conver-
gent, therefore, without loss of generality we will assume that the sequence (zx, )nen is
convergent and consider that limy_,. 2%, = Z. As we are assuming that (H5) and (H6)
are valid, then (H3) and (H6) are valid, therefore, using the Theorem we obtain
Impyioo(f(2ry) — f*) = 0, that is, imy_,400 f(2ky) = f* Since the function f is
continuous and limy_,o Tk, = Z, we have f(z) = f*, therefore T € Q*. Again, as the
sequence (xy)ren 1S quasi-Féjer, through item (ii) of the Proposition we conclude

that the sequence (xy)gen converges to . O
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Conclusion

In this work, we conducted a study of the classical gradient and subgradient methods,
as well as a subgradient method with a non-monotone line search for Lipschitz convex
functions. The gradient method, being a descent method, utilizes step sizes chosen via
exact and inexact line search. In contrast, the subgradient method is not necessarily a
descent method and employs pre-determined step sizes, which are not selected through
line search. The subgradient method with a non-monotone line search adaptively chooses
steps through a non-monotone line search mechanism similar to the Armijo rule.

In the gradient method, we studied convergence results in the following cases: when
the function is differentiable and has a Lipschitz-continuous gradient; when the function
is differentiable and has a continuous gradient; and when the function is convex, differ-
entiable, and has a continuous gradient. In the first two cases, we concluded that if the
sequence generated by the method has cluster points, then these are critical points of the
problem. In the last case, when we add the hypothesis of convexity, we ensure that if the
solution set is non-empty, the sequence generated by the method converges to the solution
of the problem.

In the subgradient method, we studied convergence results for the following step size
choices in the convex case: constant step size, constant step length, square summable but
not summable, nonsummable diminishing, and nonsummable diminishing step lengths.
We concluded that in the cases of constant step size and constant step length rules, fF
converges to an interval ”close” to the solution f(z). In the cases of square summable but
not summable, nonsummable diminishing, and nonsummable diminishing step lengths

rules, we ensure that fF . converges to the solution f(7).

49
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In the subgradient method with non-monotone line search, we study convergence re-
sults under hypotheses in the non-monotonicity sequence that are similar to the hypothe-
ses made in the classical subgradient case. We conclude that under the hypothesis (H3)
ming_;. n {f(z)} converges to the solution f* and under the hypotheses (H5) and (H6)
the sequence (xy)ken converges to a solution to the problem.

As future work, we will consider the quasiconvex and Lipschitz case. In Cruz Neto
et al. [6], the authors consider the subgradient method with square summable but not
summable step sizes and the Armijo search for continuously differentiable, quasiconvex,
and Lipschitz functions. To this end, the Plastria subdifferential is considered. It is

defined as follows:

O flx)={veR": f(y) < f(z) = (vy—z) < f(y) — f(z)}.

The reason is that if f : R®™ — R is a quasiconvex, differentiable and Lipschitz function
(with Lipschitz constant L), g € R™ is such that V f(zq) # 0, then

g:= LV f(x)
IV (o)l

see [6, Corollary 6]. Note that the subdifferential in the convex context is a particular

€ 0" f(xo);

case of the Plastria subdifferential, i.e., 9f(z) C 0¥ f(x). In this sense, the work of Cruz
Neto et al. [6], can be seen as a generalization of the classical subgradient method to the
quasiconvex context.

Since Ferreira et al. [§] demonstrated that computationally, in the convex case, the
subgradient method with non-monotone line search is more efficient than classical step
sizes, we intend to propose a non-monotone version of the subgradient method for quasi-
convex functions using the Plastria subdifferential, and thereby extending the results of
Ferreira et al. [§] and obtaining a more efficient method than that proposed in Cruz Neto
et al. [6]

Recently, Lara et al. [I3] studied the subgradient method with square summable but
not summable step sizes for strongly quasiconvex functions using the strong subdifferential
defined as follows: Let h : R® — R be a function, § > 0, v > 0, and K C R". Then the
(8,7, K)-strong subdifferential of h at z € K is given by

0% (@) ={€ € R s max{h(y). h(x)} = h(o) + 56,0~

A A
+§(7—B—X0Hy—ﬂRVyeKNAemJH
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Taking into account that if K C R™ is a closed and convex set, h : R — R lower
semicontinuous and strongly quasiconvex on K with modulus v > 0 and § > 0, then
I h(T) # @ for every T € K; see [12, Corollary 38(a)].

Using this approach, the authors removed the Lipschitz continuity hypothesis used
in Cruz Neto et al. [6]. In this context, we intend to propose a version of the subgra-
dient method for strongly quasiconvex functions with non-monotone line search, thereby

obtaining a computationally more efficient method than that proposed by Lara et al. [13].
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