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Abstract In this paper, we present an inexact version of the steepest descent method
with Armijo’s rule for multicriteria optimization in the Riemannian context given in
Bento et al. (J. Optim. Theory Appl., 154: 88–107, 2012). Under mild assumptions
on the multicriteria function, we prove that each accumulation point (if any) satisfies
first-order necessary conditions for Pareto optimality. Moreover, assuming that the
multicriteria function is quasi-convex and the Riemannian manifold has nonnegative
curvature, we show full convergence of any sequence generated by the method to
a Pareto critical point.

Keywords Steepest descent · Pareto optimality · Multicriteria optimization ·
Quasi-Fejér convergence · Quasi-convexity · Riemannian manifolds

1 Introduction

In many applications, such as engineering, statistics, and design problems, several
objective functions have to be minimized simultaneously; see, for instance, [1] and
references therein. This characterizes the so-called multiobjective optimization prob-
lem. A well-known strategy for solving multiobjective optimization problems is the
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scalarization approach. The most widely used scalarization technique is the weight-
ing method; see [2]. The choice of the vector of “weights” is of capital importance
because, even for very well behaved problems, this choice can lead to unbounded
scalar minimization problems; see, for instance, [3, 4], where a disadvantage of this
approach is characterized. For the sake of simplicity, we refer to classic scalariza-
tion methods, even if they are not the most efficient ones; but the approach can be
extended to every other one.

We recall that a classical method for solving scalar minimization problems is the
so-called gradient method. This method was proposed in the multiobjective context
by Fliege and Svaiter [5]. Since then, it has been considered in more general settings,
for instance, for vector optimization problems; see Graña-Drummond and Svaiter [3],
and for constrained vector optimization, see Graña-Drummond and Iusem [4] and
Fukuda and Graña Drummond [6, 7]. The convergence result presented in [5] is only
partial, under mild assumptions on the multicriteria function. In [3, 4, 6, 7] the authors
presented a global convergence result under the assumption of convexity of the mul-
tiobjective function. Particularly, in [3, 7] this result was restricted to inexact search
directions of the s-compatible type. For full convergence of the exact gradient method
for quasi-convex multicriteria optimization, see, for instance, Bello Cruz et al. [9].
We emphasize that the quasi-convex optimization problems have been receiving spe-
cial attention from many researchers due to the broad range of applications as, for
instance, in economic theory [10] and location theory [11]. For extensions of other
scalar optimization methods to the vectorial setting, see, for instance, [12–14] and
references therein. From the Euclidean viewpoint, following the ideas of [3], in the
present paper we present the global convergence of any sequence generated for the
inexact gradient method to a Pareto critical point (resp. weak Pareto optimal point)
of the multiobjective optimization problem in the quasi-convex case (resp. pseudo-
convex case).

Extension of concepts and techniques, as well as methods from Euclidean spaces
to Riemannian manifolds, is natural and, in general, nontrivial; see, for instance,
Udriste [15] and Rapcsák [16]. In the last few years such extensions have been the
subject of many research papers with practical and theoretical purposes; see, for ex-
ample, [17–20] and references therein. The generalization of optimization methods
from Euclidean space to Riemannian manifold have some important advantages. For
example, constrained optimization problems can be seen as unconstrained ones from
the Riemannian geometry viewpoint. Moreover, nonconvex problems in the classical
context may become convex through the introduction of an appropriate Riemannian
metric (see, for example, [21, 22]).

In the present paper, we propose an inexact version of the method presented in
[8] by admitting relative errors on the search directions; more precisely, an approxi-
mation of the exact search direction is computed at each iteration, as considered by
Fliege and Svaiter [5] in the Euclidean context (see also [3, 7]). Following the ideas
of [5], we extend the partial convergence result presented in [8] for the case inex-
act. We point out that this result is different from its counterpart in [8] since here we
deal with inexact search directions. In the sequel, we show that any sequence gen-
erated by this new method converges to a Pareto critical point when the objective
function is quasi-convex and the Riemannian manifold has nonnegative curvature.
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Moreover, we extend the definition of pseudo-convex function for the Riemannian
context, and we observed that under this hypothesis, any sequence generated by this
new method converges to a weak Pareto optimal point. We emphasize that such results
extend the presented in [8], and, as noted in the second paragraph of this introduc-
tion, they are new even in the Euclidean context, where the existing full convergence
results are obtained under the hypothesis of convexity of the multiobjective func-
tion.

The organization of our paper is as follows. In Sect. 2, some notation and results
of Riemannian geometry are defined. In Sect. 3, the multicriteria problem and some
basic definitions are presented. In Sect. 4, the Riemannian inexact steepest descent
method is stated. In Sect. 5, a partial convergence result for continuous differentiabil-
ity multicriteria optimization is presented without any additional assumption on the
objective function. Moreover, assuming that the objective function is quasi-convex
and the Riemannian manifold has nonnegative curvature, a full convergence result
is presented. Finally, in Sect. 6, examples of complete Riemannian manifold with
explicit geodesic curve and the steepest descent iteration of the sequence generated
by the proposed method are presented. In Sect. 7, we report two numerical experi-
ments.

2 Preliminary Material on Riemannian Geometry

In this section, we introduce some fundamental properties and notation of Rieman-
nian manifolds useful throughout the text as in [8, 23]. These basic facts can be found,
for instance, in [24].

From now on, let M be an n-dimensional connected manifold. We denote by TpM

the n-dimensional tangent space of M at p, by T M = ⋃
p∈M TpM the tangent bundle

of M , and by X (M) the space of smooth vector fields over M . Suppose that M be
endowed with a Riemannian metric 〈 , 〉 with the corresponding norm denoted by
‖ ‖; that is, M is a Riemannian manifold. Recall that the metric can be used to define
the length of piecewise smooth curves γ : [a, b] → M joining p to q , i.e., such that
γ (a) = p and γ (b) = q , by

l(γ ) =
∫ b

a

∥
∥γ ′(t)

∥
∥dt;

moreover, by minimizing this functional length over the set of all such curves, we
obtain a Riemannian distance d(p,q) that induces the original topology on M . The
metric induces a map

f �→ gradf ∈ X (M)

that associates to each scalar function smooth over M its gradient via the rule
〈gradf,X〉 = df (X), X ∈ X (M). Let ∇ be the Levi–Civita connection associated
to (M, 〈 , 〉). A vector field V along γ is said to be parallel iff ∇γ ′V = 0. If γ ′ it-
self is parallel. we say that γ is a geodesic. A geodesic γ = γv(·,p) is determined
by its position p and velocity v at p. We say that γ is normalized if ‖γ ′‖ = 1. The
restriction of a geodesic to a closed bounded interval is called a geodesic segment.
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A geodesic segment joining p to q in M is said to be minimal iff its length is equal to
d(p,q), and, in this case, the geodesic is called a minimizing geodesic. A Riemannian
manifold is complete iff geodesics are defined for any values of t . The Hopf–Rinow
theorem asserts that if this is the case, then any pair of points, say p and q , in M can
be joined by a (not necessarily unique) minimal geodesic segment. Moreover, (M,d)

is a complete metric space, and bounded and closed subsets are compact. If p ∈ M ,
then the exponential map expp : TpM → M is defined by expp v = γv(1,p).

We denote by R the curvature tensor defined by R(X,Y )Z = ∇X∇Y Z −
∇Y ∇XZ − ∇[X,Y ]Z with X,Y,Z ∈ X (M), where [X,Y ] = YX − XY . Then the
sectional curvature with respect to X and Y is given by K(X,Y ) = 〈R(X,Y )Y,X〉/
(‖X‖2‖Y‖2 − 〈X,Y 〉2), where ‖X‖2 = 〈X,X〉.

In Sect. 5.2, we will be interested mainly in Riemannian manifolds with nonnega-
tive curvature. A fundamental geometric property of this class of manifolds is that the
distance between points on the geodesics issuing from one point is, at least locally,
bounded from above by the distance between the points on the respective rays in the
tangent space. A global formulation of this general principle is the law of cosines that
we now pass to describe. A geodesic hinge in M is a pair of normalized geodesic seg-
ments γ1 and γ2 such that γ1(0) = γ2(0), and at least one of them, say γ1, is minimal.
From now on l1 = l(γ1), l2 = l(γ2), l3 = d(γ1(l1), γ2(l2)), and α = �(γ ′

1(0), γ ′
2(0)).

Theorem 2.1 (Law of cosines) Let M be a complete Riemannian manifold with
nonnegative curvature with the notation introduced above. The following inequality
holds: l2

3 ≤ l2
1 + l2

2 − 2l1l2 cosα.

Proof See, for example, [23]. �

3 The Multicriteria Problem

In this section, we present the multicriteria problem, the first order optimality condi-
tion for it, and some basic definitions that were presented in [8]. For completeness,
here we also present some notation.

Let I := {1, . . . ,m}, R
m+ = {x ∈ R

m : xi ≥ 0, j ∈ I }, and R
m++ = {x ∈ R

m : xj > 0,

j ∈ I }. For x, y ∈ R
m+, y � x (or x  y) means that y − x ∈ R

m+, and y � x (or x ≺ y)
means that y − x ∈ R

m++.
Given a continuously differentiable vector function F : M → R

m, we consider the
problem of finding a optimum Pareto point of F , i.e., a point p∗ ∈ M such that there
does not exist any other p ∈ M with F(p)  F(p∗) and F(p) �= F(p∗). We denote
this unconstrained problem in the Riemannian context as

min
p∈M

F(p). (1)

Let F be given by F(p) := (f1(p), . . . , fm(p)). We denote the Riemannian jacobian
of F by

JF(p) := (
gradf1(p), . . . ,gradfm(p)

)
, p ∈ M,
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and the image of the Riemannian jacobian of F at a point p ∈ M by

Im
(
JF(p)

) := {
JF(p)v = (〈

gradf1(p), v
〉
, . . . ,

〈
gradfm(p), v

〉) : v ∈ TpM
}
,

p ∈ M.

Using the above equality, the first-order optimality condition for problem (1) (see, for
instance, [8]) is stated as

x ∈ M, Im
(
JF(x)

) ∩ (−R
m++

) = ∅. (2)

In general, (2) is necessary but not sufficient for optimality. A point of M satisfying
(2) is called a Pareto critical point.

4 Inexact Steepest Descent Methods for Multicriteria Problems

In this section, we state the inexact steepest descent methods for solving multicriteria
problems admitting relative errors in the search directions; more precisely, an approx-
imation of the exact search direction is computed at each iteration, as considered, for
example, in [3, 5, 7] in the Euclidean context.

Let p ∈ M be a point that is not Pareto critical point. Then there exists a direction
v ∈ TpM satisfying JF(p)v ≺ 0. In this case, v is called a descent direction for F

at p. For each p ∈ M , we consider the following unconstrained optimization problem
in the tangent plane TpM :

min
v∈TpM

{
max
i∈I

〈
gradfi(p), v

〉 + (1/2)‖v‖2
}
, I := {1, . . . ,m}. (3)

Lemma 4.1 The following statements hold:

(i) The unconstrained optimization problem in (3) has only one solution. Moreover,
the vector v is the solution of problem (3) if and only if there exist αi ≥ 0, i ∈
I (p, v), such that

v = −
∑

i∈I (p,v)

αi gradfi(p),
∑

i∈I (p,v)

αi = 1,

where I (p, v) := {i ∈ I : 〈gradfi(p), v〉 = maxi∈I 〈gradfi(p), v〉};
(ii) If p is a Pareto critical point of F and v denotes the solution of problem (3),

then v = 0, and the optimal value associated to v is equal to zero;
(iii) If p ∈ M is not a Pareto critical point of F and v is the solution of problem (3),

then v �= 0, and

max
i∈I

〈
gradfi(p), v

〉 + (1/2)‖v‖2 < 0.

In particular, v is a descent direction for F at p.
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Proof The proof of items (i) and (iii) may be found in [8]. To prove item (ii), let us
suppose that p is a Pareto critical point of F . Then, max1≤i≤m〈gradfi(p),u〉 ≥ 0 for
all u ∈ TpM , and, hence,

max
1≤i≤m

〈
gradfi(p),u

〉 + 1/2‖u‖2 ≥ 0, u ∈ TpM.

But this tells us that v = 0 and, in particular, that the optimal value of problem (3) is
equal to zero. �

Remark 4.1 From item (i) of Lemma 4.1 we note that the solution of the minimization
problem (3) is of the form

v = −JF(p)tw, w = (α1, . . . , αm) ∈ R
m+, ‖w‖1 = 1

(
sum norm in R

m
)
,

with αi = 0 for i ∈ I \ I (p, v). In other words, if S := {ei ∈ R
m : i ∈ I } (the set of the

elements of the canonical base of Euclidean space R
m), then w is an element of the

convex hull of S(p, v), where

S(p, v) :=
{
ū ∈ S : 〈ū, JF (p)v

〉 = max
u∈S

〈
u,JF (p)v

〉}
. (4)

Note that the minimization problem (3) may be rewritten as follows:

min
v∈TpM

{
max
u∈S

〈
u,JF (p)v

〉 + (1/2)‖v‖2
}

= min
v∈TpM

{
max
u∈S

〈
JF(p)tu, v

〉 + (1/2)‖v‖2
}
.

In view of the previous lemma and (3), we define the steepest descent direction
function for F as follows.

Definition 4.1 The steepest descent direction function for F is defined as

p ∈ M,p �−→ v(p) := arg min
v∈TpM

{
max
i∈I

〈
gradfi(p), v

〉 + (1/2)‖v‖2
}

∈ TpM.

Remark 4.2 This definition was considered in the Riemannian context in [8]. When
M = R

n, we are with the steepest descent direction proposed in [5].

The optimal valued associated to v(p) will be denoted by α(p). Note that the
function

p ∈ M, p �−→ max
i∈I

〈
gradfi(p), v

〉 + (1/2)‖v‖2 ∈ R,

is strongly convex with modulus 1/2 and 0 ∈ ∂ (maxi∈I 〈gradfi(p), . 〉+ 1/2‖.‖2)×
(v(p)).

So, for all v ∈ TpM ,

max
i∈I

〈
gradfi(p), v

〉 + (1/2)‖v‖2 − α(p) ≥ 1/2
∥
∥v − v(p)

∥
∥2

. (5)
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Lemma 4.2 The steepest descent direction function for F , p ∈ M,p �→ v(p) ∈
TpM , is continuous. In particular, the function p ∈ M , p �→ α(p) ∈ R, is also con-
tinuous.

Proof See [8] for the proof of the first part. The second part is an immediate conse-
quence of the first. �

Definition 4.2 Let σ ∈ [0,1[. A vector v ∈ TpM is said to be a σ -approximate steep-
est descent direction at p for F iff

max
1≤i≤m

〈
gradfi(p), v

〉 + 1/2‖v‖2 ≤ (1 − σ)α(p).

Note that the exact steepest descent direction at p is a σ -approximate steepest
descent direction for F with σ = 0. As an immediate consequence of Lemma 4.1
together with last definition, it is possible to prove the following:

Lemma 4.3 Given p ∈ M ,

(i) v = 0 is a σ -approximate steepest descent direction at p if and only if p is a
Pareto critical point;

(ii) if p is not a Pareto critical point and v is a σ -approximate steepest descent
direction at p, then v is a descent direction for F .

Next lemma establishes the degree of proximity between an approximate direction
v and the exact direction v(p) in terms of the optimal value α(p).

Lemma 4.4 Let σ ∈ [0,1[. If v ∈ TpM is a σ -approximate steepest descent direction
at p, then

∥
∥v − v(p)

∥
∥2 ≤ 2

∣
∣α(p)

∣
∣.

Proof The proof follows from (5) combined with Definition 4.2. �

A particular class of σ -approximate steepest descent directions for F at p is given
for the directions v ∈ TpM that are compatible scalarization, i.e., such that there
exists w̃ ∈ conv S with

v = −JF(p)t w̃. (6)

From Remark 4.1 we observe that, for each p ∈ M , the steepest descent direction
for F at p, v(p), is compatible scalarization. Note that w̃ determines a scalar func-
tion g(p) := 〈w̃,F (p)〉 whose steepest descent direction coincides with v, which
justifies the name previously attributed to the direction v; see [3] for a good discus-
sion.

The inexact steepest descent method with the Armijo rule for solving the uncon-
strained optimization problem (1) is as follows.
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Method 4.1 (Inexact steepest descent method with Armijo rule)

INITIALIZATION Take β ∈ ]0,1[ and p0 ∈ M . Set k = 0.
STOP CRITERION If pk is a Pareto critical point, STOP. Otherwise,
ITERATIVE STEP Compute a σ -approximate steepest descent direction vk for F

at pk , and the steplength tk ∈ ]0,1] is as follows:

tk := max
{
2−j : j ∈ N,F

(
exppk

(
2−j vk

))  F
(
pk

) + β2−j JF
(
pk

)
vk

}
. (7)

Set

pk+1 := exppk

(
tkv

k
)

(8)

and GOTO STOP CRITERION.

Remark 4.3 The Method 4.1 is a natural extension of the method proposed by Fliege
and Svaiter [5] in the Riemannian context. Moreover, it becomes the steepest descent
method for vector optimization in Riemannian manifolds proposed in [8].

Next proposition ensures that the sequence generated by Method 4.1 is well de-
fined.

Proposition 4.1 The sequence {pk} generated by the steepest descent method with
Armijo’s rule is well defined.

Proof The proof follows from item ii of Lemma 4.3 combined with the fact that F

is continuously differentiable. See [8] for more details. �

5 Convergence Analysis

In this section, following the ideas of [5], we extend the partial convergence result
presented in [8] for the case inexact. In the sequel, following the ideas of [3] and
assuming that F is quasi-convex and M has nonnegative curvature, we extend the
full convergence result presented in [23] and [25] to multicriteria optimization, as
well as the full convergence result presented in [8] for the inexact case.

If Method 4.1 terminates after a finite number of iterations, then it terminates at a
Pareto critical point. From now on, we will assume that Method 4.1 generates infinite
sequences {pk}, {vk}, and {tk}.

To simplify the notation, in what follows, we will use the scalar function
ϕ : R

m → R defined as

ϕ(y) = max
i∈I

〈y, ei〉 I = {1, . . . ,m},

where {ei} ⊂ R
m is the canonical basis of the space R

m. It is easy to see that the
following properties of the function ϕ hold:

ϕ(x + y) ≤ ϕ(x) + ϕ(y), ϕ(tx) = tϕ(x), x, y ∈ R
m, t ≥ 0. (9)

x  y ⇒ ϕ(x) ≤ ϕ(y), x, y ∈ R
m. (10)
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5.1 Partial Convergence Result

In this section, we prove that every accumulation point of {pk} is a Pareto critical
point. Although the proof of this result is similar to that presented in [8, Theorem 5.1]
(here we deal with inexact search directions), we chose to present its proof here for
reasons of completeness.

Theorem 5.1 The sequence {F(xk)} is decreasing, and the following statements
hold:

(i) If {pk} has accumulation point, then {t2
k ‖vk‖2} is a summable sequence, and

lim
k→+∞ tk

∥
∥vk

∥
∥2 = 0; (11)

(ii) Each accumulation point of the sequence {pk}, if any, is a Pareto critical point.

Proof The iterative step in Method 4.1 implies that

F
(
pk+1)  F

(
pk

) + βtkJF
(
pk

)
vk, pk+1 = exppk tkv

k, k = 0,1, . . . . (12)

Since {pk} is an infinite sequence, for all k, pk is not a Pareto critical point of F .
Thus, the first part of the theorem follows from item ii of Lemma 4.3 combined with
the last vector inequality.

Suppose now that {pk} has an accumulation point p̄ ∈ M . Taking into account
that {F(pk)} is a decreasing sequence, it is easy to conclude that the whole sequence
{F(pk)} converges to F(p̄). So, from the definition of the function ϕ we conclude
that {ϕ(F (xk))} converges to ϕ(F (x̄)) and, in particular,

ϕ
(
F(x̄)

) ≤ ϕ
(
F

(
xk

))
, k = 0,1, . . . . (13)

From (12), (9), (10) and the definition of vk we obtain

ϕ
(
F

(
pk+1)) − ϕ

(
F

(
pk

)) ≤ β
(
(1 − σ)tkα

(
xk

) − (1/2)tk
∥
∥vk

∥
∥2)

, k = 0,1 . . . .

(14)
Summing the last inequality from k = 0 to n and taking into account that |α(xk)| =
−α(xk), β ∈]0,1[, and ϕ(F (p̄)) ≤ ϕ(F (pn+1)) (see (13)), we get

n∑

k=0

[
(1 − σ)tk

∣
∣α

(
pk

)∣
∣ + (1/2)tk

∥
∥vk

∥
∥2] ≤ ϕ(F (p0)) − ϕ(F (p̄))

β
, n ≥ 0.

But this tells us that (recall that σ ∈ [0,1[)
+∞∑

k=0

tk
∣
∣α

(
pk

)∣
∣ < +∞ and

+∞∑

k=0

tk
∥
∥vk

∥
∥2

< +∞, (15)

from which the second part of item i follows. The first part of item i follows from
last inequality in (15) together with the fact that tk ∈ ]0,1].

Author's personal copy



J Optim Theory Appl

We assume initially that p̄ is an accumulation point of the sequence {pk} and
that {pks } is a subsequence of {pk} converging to p̄. As {pks } converges to p̄, we
assume that {(pks , v(pks ))} ⊂ T Up̄ , where Up̄ is a neighborhood of p̄ such that
T Up̄ ≈ Up̄ × R

n. From Lemma 4.2 we may to conclude that {v(pks )} and {αpks }
converge, respectively, to v(p̄) and αp̄ . In particular, from Lemma 4.4 it follows that
{vks } is bounded and, hence, has a convergent subsequence. Moreover, the sequence
{tk} ⊂ ]0,1] also has an accumulation point t̄ ∈ [0,1]. We assume, without loss of
generality, that {tks } converges to t̄ and {vks } converges to some v̄. From Eq. (11) it
follows that

lim
s→+∞ tks

∥
∥vks

∥
∥2 = 0. (16)

We have two possibilities to consider: (a) t̄ > 0 and (b) t̄ = 0. Assume that item (a)
holds. Then, from (16) it follows that v̄ = 0. So, using the definition of vk , it is easy
to see that v̄ = 0 is a σ -approximation steepest descent direction for F at p̄, and from
item i of Lemma 4.3 we conclude that p̄ is a Pareto critical point of F .

Now, assume that item (b) holds. Since vks is a σ -approximation steepest descent
method for F at pks and {pks } is not a Pareto critical point, we have

max
i∈I

〈
gradfi

(
pks

)
, vks

〉 ≤ max
i∈I

〈
gradfi

(
pks

)
, vks

〉+(1/2)
∥
∥vks

∥
∥2

< (1−σ)α
(
pks

)
< 0,

where the last inequality is a consequence of item (iii) of Lemma 4.1. Hence, letting
s to +∞ in the last inequalities and using that {vks } converges to v̄, we obtain

max
i∈I

〈
gradfi(p̄), v(p̄)

〉 ≤ (1 − σ)α(p̄) ≤ 0. (17)

Take r ∈ N. Since {tks } converges to t̄ = 0, we conclude that if s is large enough,
then tks < 2−r . From (7) this means that the Armijo condition (12) is not satisfied for
t = 2−r , i.e.,

F
(
exppk

(
2−j vks

))
� F

(
pks

) + β2−rJF
(
pks

)
vks ,

which means that there exists at least one i0 ∈ I such that

fi0

(
exppks

(
2−rvks

))
> fi0

(
pks

) + β2−r
〈
gradfi0

(
pks

)
, vks

〉
.

Letting s to +∞ in the above inequality, taking into account that gradfi0 and the
exponential mapping are continuous, and using that {vks } converges to v̄, we obtain

fi0(expp̄(2−rv(p̄))) − fi0(p̄)

2−r
≥ β

〈
gradfi0(p̄), v(p̄)

〉
.

So, letting r to +∞ and assuming that 0 < β < 1, we obtain 〈gradfi0(p̄), v(p̄)〉 ≥ 0.
Hence,

max
i∈I

〈
gradfi(p̄), v(p̄)

〉 ≥ 0,

which, combined with (17) and taking into account that σ ∈ [0,1[, implies α(p̄) = 0.
Therefore, from item (iii) of Lemma 4.1 it follows that p̄ is a Pareto critical point
of F , and the proof is concluded. �
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5.2 Full Convergence

In this section, under the quasi-convexity assumption on F and nonnegative curvature
for M , full convergence of the steepest descent method is obtained.

Definition 5.1 A function H : M → R
m is called pseudo-convex on M iff H is dif-

ferentiable and, for every p,q ∈ M and every geodesic segment γ : [0,1] → M join-
ing p to q , the following holds:

JH(p)γ ′(0) �≺ 0 ⇒ H(q) �≺ H(p).

Remark 5.1 The definitions of convex and quasi-convex functions were presented
in [8]. In the particular case that H is differentiable, convexity implies pseudo-
convexity.

The next proposition provides a characterization for differentiable quasi-convex
functions. From this characterization it follows that pseudo-convex functions are
quasi-convex.

Proposition 5.1 Let H : M → R
m be a differentiable function. Then, H is a

quasi-convex function if, only if, for every p,q ∈ M and every geodesic segment
γ : [0,1] → M joining p to q , it holds

H(q) ≺ H(p) ⇒ JH(p)γ ′(0)  0. (18)

Proof Let us assume that, for every pair of points p,q ∈ M and every geodesic seg-
ment γ : [0,1] → M joining p to q , (18) holds. Take p̃, q̃ ∈ M and assume that, for
every geodesic segment γ : [0,1] → M with γ (0) = p̃ and γ (1) = q̃ , it follows that
H(q̃) ≺ H(γ (t)) for t ∈ [0,1[. So, using (18) with q = q̃ and p = γ (t), we obtain

JH
(
γ (t)

)
γ ′(t)  0

⇒ d

dt
hi

(
γ (t)

) = 〈
gradhi

(
γ (t)

)
, γ ′(t)

〉 ≤ 0, i ∈ {1, . . . ,m},

where H = (h1, . . . , hm). But this implies that hi(γ (t)) ≤ hi(γ (0)) = hi(p̃) for i ∈
{1, . . . ,m} and, hence, that H(γ (t))  H(p̃) = max{H(p̃),H(q̃)}, which proves the
first part of the proposition. The proof of the second part follows immediately from
the definition of quasi-convexity combined with differentiability of H ; see [8] for
more details. �

We know that criticality is a necessary, but not sufficient, condition for optimality.
In [8] the authors proved that, under the convexity of the vectorial function F , crit-
icality is equivalent to the weak optimality. Next we prove that the equivalence still
happens if F is just pseudo-convex.

Definition 5.2 A point p∗ ∈ M is a weak optimal Pareto point of F iff there is no
p ∈ M with F(p) ≺ F(p∗).
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Proposition 5.2 Let H : M → R
m be a pseudo-convex function. Then, p ∈ M is a

Pareto critical point of H iff p is a weak optimal Pareto point of H .

Proof Let us suppose that p is a Pareto critical point of H . Assume by contradiction
that p is not a weak Pareto optimal point of H , i.e., that there exists p̃ ∈ M such
that H(p̃) ≺ H(p). Let γ : [0,1] → M be a geodesic segment joining p to p̃ (i.e.,
γ (0) = p and γ (1) = p̃). As H is pseudo-convex, then the last inequality implies
that JH(p)γ ′(0) ≺ 0. But this contradicts the fact of p being a Pareto critical point
of H , and so the first part is concluded. The second part is a simple consequence of
the fact that F is differentiable with the definitions of Pareto critical point and weak
Pareto optimal point. For more details, see [8]. �

Consider the following set

U := {
p ∈ M : F(p)  F

(
pk

)
, k = 0,1, . . .

}
. (19)

In general, the above set may be an empty set. To guarantee that U is nonempty, an
additional assumption on the sequence {pk} is needed. See [8, Remark 5.3].

Assumption 5.1 Each vk of the sequence {vk} is a compatible scalarization, i.e.,
there exists a sequence {wk} ⊂ conv S such that

vk = −JF
(
pk

)t
wk, k = 0,1, . . . .

As was observed in Sect. 4, this assumption holds if vk = v(xk), i.e., if vk is the
exact steepest descent direction at xk . We observe that Assumption 5.1 also was used
in [3] for proving the full convergence of the sequence generated for the Algorithm
in the case that M is the Euclidean space and F is convex. From now on, we will
assume that Assumption 5.1 holds.

Next lemma generalizes [8, Lemma 5.3] for directions satisfying Assumption 5.1.
It is the main result of this section that is fundamental for the proof of the global
convergence result of the sequence {pk}.

Lemma 5.1 Suppose that F is quasi-convex, M has nonnegative curvature, and U ,
defined in (19), is nonempty. Then, for all p̃ ∈ U , the following inequality holds:

d2(pk+1, p̃
) ≤ d2(pk, p̃

) + t2
k

∥
∥vk

∥
∥2

.

Proof Consider the geodesic hinge (γ1, γ2, α), where γ1 is a normalized minimal
geodesic segment joining pk to p̃; γ2 is the geodesic segment joining pk to pk+1

such that γ ′
2(0) = tkv

k and α = ∠(γ ′
1(0), vk). Taking into account that cos(π − α) =

− cosα and 〈−vk, γ ′
1(0)〉 = ‖vk‖ cos(π − α), from the law of cosines (Theorem 2.1)

we have

d2(pk+1, p̃
) ≤ d2(pk, p̃

) + t2
k

∥
∥vk

∥
∥2 + 2d

(
pk, p̃

)
tk

〈−vk, γ ′
1(0)

〉
, k = 0,1, . . . .
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For each k ∈ N, Assumption 5.1 implies that there exists wk ∈ convS such that vk =
−JF(pk)twk . So, the last vector inequality yields

d2(pk+1, p̃
) ≤ d2(pk, p̃

) + t2
k

∥
∥vk

∥
∥2 + 2d

(
pk, p̃

)
tk

〈
wk,JF

(
pk

)
γ ′

1(0)
〉
,

k = 0,1, . . . . (20)

Since F is quasi-convex and p̃ ∈ U , from Proposition 5.1 with H = F , p = pk ,
q = p̃, and γ = γ1 we have

JF
(
pk

)
γ ′

1(0)  0, k = 0,1, . . . .

Now, because wk ∈ conv S, we get
〈
wk,JF

(
pk

)
γ ′

1(0)
〉 ≤ 0, k = 0,1, . . . . (21)

Therefore, the lemma follows by combining (20) with (21). �

Definition 5.3 A sequence {qk} ⊂ M is quasi-Fejér convergent to a nonempty set U

iff, for all q ∈ U , there exists a sequence {εk} ⊂ R+ such that

+∞∑

k=0

εk < +∞, d2(qk+1, q
) ≤ d2(qk, q

) + εk, k = 0,1, . . . .

Proposition 5.3 If F is quasi-convex, M has nonnegative curvature, and U , defined
in (19), is a nonempty set, then the sequence {pk} is quasi-Fejér convergent to U .

Proof The resulted follows from item (ii) of Theorem 5.1 and Lemma 5.1 combined
with Definition 5.3. �

Theorem 5.2 Suppose that F is quasi-convex, M has nonnegative curvature, and U ,
as defined in (19), is a nonempty set. Then, the sequence {pk} converges to a Pareto
critical point of F .

Proof From Proposition 5.3, {pk} is quasi-Fejér convergent to U . Thus, [23,
Lemma 5.2] guarantees that {pk} is bounded and, by the Hopf–Rinow theorem, has
an accumulation point p̄ ∈ M . Since {F(pk)} is a decreasing sequence, we con-
clude that p̄ ∈ U and, hence, that the whole sequence {pk} converges to p̄ (see [23,
Lemma 5.2]). The conclusion of the proof is a consequence of item (iii) of Theo-
rem 5.1. �

Corollary 5.1 If F is pseudo-convex, M has nonnegative curvature, and U , as de-
fined in (19), is a nonempty set, then the sequence {pk} converges to a weak Pareto
optimal point of F .

Proof Since F is pseudo-convex and in particular quasi-convex, the corollary is a
consequence of the previous theorem and Proposition 5.2. �
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6 Examples

For examples of complete Riemannian manifolds with explicit geodesic curves and
the steepest descent iteration of the sequence generated by Method 4.1, see [8, Ex-
amplea 6.1, 6.2, and 6.3]. The manifolds of Examples 6.1 and 6.2 have sectional cur-
vature identically null. The manifold of Example 6.3 has sectional curvature K ≤ 0.
In this section we present another example of complete Riemannian manifold with
explicit geodesic curves whose sectional curvature is K ≥ 0, not identically null.
We recall that the function F : M → R

m, F(p) := (f1(p), . . . , fm(p)), is differ-
entiable. If (M,G) is a Riemannian manifold, then the Riemannian gradient of fi

is given by gradfi(p) = G(p)−1f ′
i (p), i ∈ I := {1, . . . , n}. Hence, if v(p) is the

steepest descent direction for F at p (see Definition 4.1), it takes the form given by
Lemma 4.1.

Example 6.1 (Steepest descent method for the revolution surfaces) Let f,g : R → R

be continuously differentiable functions such that f (u) > 0, and let M be a revo-
lution surface, obtained from a regular plane curve β(u) := (f (u), g(u)) (known as
generating curve of M), endowed with the induced metric from R

3. Note that M is
connected and by [24, Corollary 2.10], M is also a complete Riemannian manifold.
Consider the following parameterization of M :

X(u,v) = (
f (u) cosv,f (u) sinv,g(u)

)
, 0 ≤ v < 2π. (22)

In this case, when the curve β is parameterized by arc length, the sectional curva-
ture (see [26, p. 162]) is given by K = −f ′′/f . Hence, a necessary and sufficient
condition to have K ≥ 0 is the concavity of f .

In the particular case where the generating curve β(u) = (u,u2) is parameterized
by arc length, we have that K > 0 and M is a connected and complete Riemannian
manifold. At each iteration k, we minimize the function F along the geodesics on M

by solving the following second-order differential equation (with ODE/Scilab):
{(

1 + 4u2
)
u′′ + 4u

(
u′)2 − u

(
v′)2 = 0,

uv′′ + 2u′v′ = 0,

with the initial conditions u(0) = uk , v(0) = vk , and (u′(0), v′(0)) = dk , where dk is
a steepest descent direction at pk = X(uk, vk) for F .

7 Numerical Experiments

In this section, we present some numerical experiments. The examples presented
illustrate the performance of Method 4.1 when the manifold is a hypercube and when
the manifold is an elliptic paraboloid.

The algorithm was coded in SCILAB 5.3 on a 2-GB RAM Atom notebook. We
denote by Iter(k) the number of iterations and by Call.Armijo the number of steps in
Armijo search. The stop condition is α(pk) ∈ ]−ε,0[, where ε = 10−4.
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7.1 Quasi-Convex Minimization on a Hypercube

We consider problem (1), where M = (]0,1[n,P −2(I − P)−2), and F(p) =
(f1(p), f2(p), f3(p)) is given by f1(p) = √−log(p1(1 − p1)p2(1 − p2)), f2(p) =
log(1 − log(p1(1 − p1)p2(1 − p2))), and

f3(p) = arctan
(− log

(
p1(1 − p1)p2(1 − p2)

))
.

It is known that M is a connected and complete Riemannian manifold and each fi ,
i = 1,2,3, is quasi-convex in M ; see [25]. Note that problem (1) has a unique min-
imal point p∗ = (0.5,0.5) and f1(p

∗) = 2
√

log 2, f2(p
∗) = log(1 + 4 log 2), and

f3(p
∗) = arctan(4 log 2). We show the ISDM behavior in Table 1.

7.2 A Convex Problem on an Elliptic Paraboloid

Now, let us consider problem (1), where M = {(p1,p2,p3) ∈ R
3 : p2

3 = p2
1 + p2

2}
with the parameterization (22), and F(p) = (f1(p), f2(p)) is given by f1(p) =
√

p3e
√

p3 and f2(p) =
√

p3 arctan(
p2
p1

)2

16π2 , whose optimal value is F
 = 0. In Fig. 1, we

show the evolution of α(pk) along of the 500 Iterations(k).

Table 1 Behavior of ISDM with different starting points

p0 Iter(k) Call.Armijo pk α(pk)

(0.10,0.90) 115 114 (0.4552,0.4561) −9.8038D-05

(0.20,0.80) 80 79 (0.4533,0.4554) −9.9238D-05

(0.60,0.40) 23 22 (0.5540,0.5280) −9.7997D-05

(0.85,0.15) 98 97 (0.5437,0.5436) −9.8880D-05

Fig. 1 Minimization on the elliptic paraboloid
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8 Final Remarks

The convergence analysis presented in this paper uses the principle of quasi-Fejér
convergence. It is known, since the preliminary studies on the convergence analysis
in the Riemannian context, that such an approach determines a restriction on the
sign of the sectional curvature of the manifold and on the objective function (in our
case multiobjective function). In particular, this approach is limited to manifolds that
have infinite volume; see Yamaguchi [27]. As future work, we intend to extend our
analysis to compact Riemannian manifolds whose sign of the sectional curvature
is not necessarily constant; see Rapsáck [28] for examples of such manifolds. We
mention that the analysis proposed in this present paper do not extend trivially to this
situation. For this purpose, a different approach is necessary; see [29].
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