As redes de longa distância de baixa potência (LPWAN) são tecnologias que ganharam interesse na pesquisa e comunidade industrial para dispositivos e aplicações de Internet das Coisas (IoT) assim como o protocolo LoRa Wide Area Network (LoRaWAN) que permite a implementação de aplicações de redes de longo alcance e baixa potência para a IoT. Seu esquema de modulação, Long Range (LoRa), utiliza diversos parâmetros de transmissão como Spreading Factor (SF), Payload Size (PS), Bandwidth (BW) e Coding Rate (CR) permitindo uma comunicação bidirecional, possibilitando ao LoRaWAN o uso de algoritmo adaptativo, o Adaptive Data Rate (ADR), para atribuir esses parâmetros dinamicamente explorando as vantagens do LoRa. No entanto, o sistema de controle ADR não ajusta os parâmetros considerando a evolução da Qualidade de Serviço (QoS) das aplicações, sendo o planejamento da rede e a otimização considerados problemas significativos impactando no desempenho e nos custos das despesas de capital (CAPEX) e operacionais (OPEX). Nesse contexto, este trabalho propõe determinar a quantidade de diferentes QoS analisando as características do conjunto de configurações LoRaWAN através da combinação dos métodos gap statistic com algoritmo Fuzzy C-Means (FCM) e elbow com K-means. Adicionalmente, realizou-se agrupamento com FCM baseado nas métricas Bit Error Rate (BER), Received Signal Strenght Indicator (RSSI) e Time on Air (ToA) e desenvolver um estudo comparativo de estratégias de posicionamento de gateways (GW) que usam os algoritmos FCM, Gustafson-Kessel (GK) e K-means; adicionando uma estratégia que segmenta o cenário em grades de 2km, posicionando o GW no centro, e outra que dispõe os GWs aleatoriamente, avaliando as métricas RSSI, Signal to Noise Ratio (SNR), delay e distância, possibilitando uma redução do número de GW e dos custos CAPEX e OPEX como também estabelecer o desempenho das estratégias para as métricas. Nos resultados determinaram agrupamentos adequados conforme os diferentes tipos de QoS baseado na combinação dos métodos, enquanto o FCM permitiu agrupar as aplicações com QoS similares. O estudo comparativo mostrou uma redução da quantidade de GW e dos custos CAPEX e OPEX com aproximadamente a mesma proporção de entrega em relação ao Grid25; as estratégias FCM e GK obtiveram desempenho superior, a partir de 22 GW, para as métricas RSSI e SNR em relação ao Kmeans, já a FCM e Kmeans apresentaram menores distâncias e delay comparado ao GK a partir de 18 GW.