Uma banca de DEFESA de DOUTORADO foi cadastrada pelo programa.
DISCENTE: ELINEIDE SILVA DOS SANTOS
DATA: 09/02/2026
HORA: 14:00
LOCAL: Sala de Videoconferência do PPGCC
TÍTULO: Arquitetura Multilevel de CNNs para Otimizacao da Classificacao de Ulceras do Pé Diabetico
PALAVRAS-CHAVES: Aprendizado profundo, Úlceras do pé diabético, Análise de imagem, Multilevel, Classificação de imagens.
PÁGINAS: 72
GRANDE ÁREA: Ciências Exatas e da Terra
ÁREA: Ciência da Computação
RESUMO:
As úlceras do pé diabético (DFUs) são lesões problemáticas devido às suas altas taxas de recorrência. Identificar DFUs com infecção e isquemia é essencial para o tratamento adequado e a prevenção de amputações. A abordagem multilevel proposta combina duas redes neurais convolucionais (CNNs) para classificar imagens de DFU em quatro categorias: inexistente, infecção, isquemia e ambas (infecção/isquemia). Foi adotado transferência de aprendizado, e o multilevel proposto inclui camadas totalmente conectadas com diferentes quantidades de neurônios e batch normalization. Técnicas de aumento de dados foram aplicadas a um conjunto composto por 8.242 imagens, para lidar com o problema de desbalanceamento entre classes, reduzir o risco de overfitting e melhorar o desempenho da abordagem. Testes adicionais foram realizado com combinações de CNNs utilizando técnicas como ensembles, no entanto, o multilevel apresentou os melhores resultados. A avaliação do desempenho foi realizada por meio de validação cruzada (cross-validation) com 5-fold. Nos experimentos com classificação em quatro classes, os melhores resultados foram a VGG-16 com valores acurácia, F1-score, kappa de 93,43%, 93,42% e 89,21% no cenário com apenas um modelo; o ensemble V19V16ResDenIn obteve acurácia, F1-score, kappa de 95,04%, 94,71% e 91,85%; e o multilevel DeepMLvggNet alcançou 95,91% de acurácia, 95,93% de F1-score e 93,28% de kappa. Além disso, uma técnica de validação foi aplicada usando conjuntos de dados cruzados (cross-dataset), utilizando o modelo DeepMLvgg- Net treinado com o DFUC e testado com o Kaggle DFU. Nessa avaliação, o modelo alcançou valores superiores a 79% para acurácia, F1-score e kappa. Em comparação à literatura, o modelo multilevel DeepMLvggNet obteve desempenho superiores às abordagens com quatro classes. Enquanto, os resultados foram inferiores na classificação binária, no entanto, os estudos da literatura utilizaram o mesmo conjunto de dados para treinamento e testes, o que favorece o ajuste dos modelos. Entretanto, o DeepMLvgg- Net demonstrou resiliência ao ser avaliado em domínios distintos, evidenciando seu potencial para aplicação no diagnóstico por imagens DFU.
MEMBROS DA BANCA:
Externo à Instituição - 246.***.***-54 - ANDREA GOMES CAMPOS BIANCHI - UFOP
Externo à Instituição - 580.***.***-72 - EULANDA MIRANDA DOS SANTOS - UFAM
Interno - 1350246 - KELSON ROMULO TEIXEIRA AIRES
Interno - 1642492 - LAURINDO DE SOUSA BRITTO NETO
Presidente - 1579396 - RODRIGO DE MELO SOUZA VERAS
Cadastrada em: 19/01/2026